
Edge C SDK Developer’s
Guide

Version 2.2.1
February 2019

Copyright © 2019 PTC Inc. and/or Its Subsidiary Companies. All Rights Reserved.

User and training guides and related documentation from PTC Inc. and its subsidiary companies (collectively
"PTC") are subject to the copyright laws of the United States and other countries and are provided under a
license agreement that restricts copying, disclosure, and use of such documentation. PTC hereby grants to the
licensed software user the right to make copies in printed form of this documentation if provided on software
media, but only for internal/personal use and in accordance with the license agreement under which the
applicable software is licensed. Any copy made shall include the PTC copyright notice and any other
proprietary notice provided by PTC. Training materials may not be copied without the express written consent
of PTC. This documentation may not be disclosed, transferred, modified, or reduced to any form, including
electronic media, or transmitted or made publicly available by any means without the prior written consent of
PTC and no authorization is granted to make copies for such purposes. Information described herein is
furnished for general information only, is subject to change without notice, and should not be construed as a
warranty or commitment by PTC. PTC assumes no responsibility or liability for any errors or inaccuracies
that may appear in this document.

The software described in this document is provided under written license agreement, contains valuable trade
secrets and proprietary information, and is protected by the copyright laws of the United States and other
countries. It may not be copied or distributed in any form or medium, disclosed to third parties, or used in any
manner not provided for in the software licenses agreement except with written prior approval from PTC.

UNAUTHORIZED USE OF SOFTWARE OR ITS DOCUMENTATION CAN RESULT IN CIVIL
DAMAGES AND CRIMINAL PROSECUTION.

PTC regards software piracy as the crime it is, and we view offenders accordingly. We do not tolerate the
piracy of PTC software products, and we pursue (both civilly and criminally) those who do so using all legal
means available, including public and private surveillance resources. As part of these efforts, PTC uses data
monitoring and scouring technologies to obtain and transmit data on users of illegal copies of our software.
This data collection is not performed on users of legally licensed software from PTC and its authorized
distributors. If you are using an illegal copy of our software and do not consent to the collection and
transmission of such data (including to the United States), cease using the illegal version, and contact PTC to
obtain a legally licensed copy.

Important Copyright, Trademark, Patent, and Licensing Information: See the About Box, or copyright
notice, of your PTC software.

UNITED STATES GOVERNMENT RIGHTS

PTC software products and software documentation are “commercial items” as that term is defined at 48 C.F.
R. 2.101. Pursuant to Federal Acquisition Regulation (FAR) 12.212 (a)-(b) (Computer Software) (MAY 2014)
for civilian agencies or the Defense Federal Acquisition Regulation Supplement (DFARS) at 227.7202-1(a)
(Policy) and 227.7202-3 (a) (Rights in commercial computer software or commercial computer software
documentation) (FEB 2014) for the Department of Defense, PTC software products and software
documentation are provided to the U.S. Government under the PTC commercial license agreement. Use,
duplication or disclosure by the U.S. Government is subject solely to the terms and conditions set forth in the
applicable PTC software license agreement.

PTC Inc., 140 Kendrick Street, Needham, MA 02494 USA

Contents

About this Guide ... 11

Introducing the ThingWorx Edge C SDK..15
Installing and Navigating the Directories of the C SDK ...19

Getting Started..29
Configuring Components of the C SDK...33
Handling Offline Messages..36
Minimizing Code Footprint ...38

Steps for Setting Up Applications..40
Defining Properties ...41
Defining Events ..48
Define Property Callback Functions ...48
Define Service Callback Functions ...50
Create Your Tasks (Optional) ...52
Creating a Bind Event Handler (Optional) ...53
Create a File Transfer Event Handler (Optional) ..53
Create a Tunnel Event Handler (Optional) ..54
Implementing a Synchronized State Handler ..55

Running the C SDK ...56
Initializing the API Singleton ..57
Registering Properties and Services...59
Registering Events..60
Binding Your Entities ...60
Initializing the File Manager (Optional)..61
Initializing the Tunnel Manager (Optional) ...62
Creating a Bind Event Handler (Optional) ...65
Using the Utilities of the C SDK..65
Connecting to the Server and Initiating Defined Tasks ...68
Running the C SDK on Windows-based Operating Systems70

Setting Up Security..71
Using SSL/TLS for Security ...72
Setting Up Secure Connections ...73
Proxy Server Authentication ..76
FIPS Mode...78
Support for Cipher Suites ..79
Debugging with GDB and OpenSSL on ARM Platforms ...80
Troubleshooting Connection Errors (C SDK v.1.4.0 and earlier)..............................81

Using Edge Extensions..82

3

ThingWorx Edge SDK Extensions for the C SDK...83
Creating a Directory of Registered Shapes and Templates.....................................83
Loading Shape Libraries ...83
Tasks for EdgeThingShape and EdgeThingTemplate Constructors83
Macros for the Edge Extensions...83
Services...83
Events ...83
Best Practices for Developing Edge Extensions ..83
Examples of Using Edge Extensions with the C SDK...83

Advanced Use of Edge Extensions ...84
Modifying Property Values at Runtime ..85
Applying EdgeThingShapes at Runtime ...85
Inter-Shape Communication ..85
Calling ThingWorx Platform Functions..85
Polling Updates for EdgeThingShapes ...85

Interacting with ThingWorx...86
Basic Data Structures ...87
Server-Initiated Interaction ..92
SDK Application-Initiated Interaction ..96

Building a ThingWorx Edge C SDK Application.. 102
Using CMake with ThingWorx C SDK Examples ... 103
Building Applications with CMake... 103

Porting to Another Platform .. 108
Supporting New Platforms... 109
Requirements for Platforms ... 109
Defining the Chosen OS.. 109
SSL/TLS Support.. 110
Logging Functions .. 111
Memory Management Functions.. 112
Date/Time Functions... 112
Synchronization Functions .. 113
Socket Functions .. 113
Tasker Functions .. 115
File System Functions... 115
Native Threads... 116

Appendix A.Error Codes .. 117
General Errors.. 118
Websocket Errors ... 118
Messaging Errors ... 120
Primitive and InfoTable Errors .. 122
List Errors .. 123
API Errors .. 123
Tasker Errors.. 124
Logger Errors ... 125
Utils Errors ... 125

4 Edge C SDK Developer’s Guide

System Socket Errors ... 126
Message Code Errors ... 128
Subscribed (Managed) Property Errors .. 130
File Transfer Errors ... 130
Tunneling Errors ... 131
TLS Errors ... 132

Appendix B.Callback Function Return Codes .. 133

Contents 5

Document Revision History
The following table briefly describes changes to this document for each release in
which it was updated. For all interim releases (for example, 2.0.5, 2.1.1), please
refer to the release notes for the changes in those releases.

Revision Date Version
Description of
Change

February 2019 2.2.1 Changed version of
OpenSSL to 1.0.2q for
the NON-FIPS
distributions of this SDK.
This release includes non-
FIPS OpenSSL 32– and
64–bit libraries that on
Windows is based on
Visual Studio 2015
runtime library. The FIPS
versions of this SDK are
still based on Visual
Studio 2012.
Also removed mention of
AxTLS since it is no
longer provided in the
distribution bundle.

December 2018 2.2.0 New callbacks to secure
Application Keys,
digests, passwords for
opening certificates, and
passphrases for opening
keystore files. For details,
see the information about
the callback function for
Application keys in
Initialize API Singleton
on page 57, the section of
the topic on initializing
the TunnelManager called
Passwords (C SDK 2.2.0
and later) on page 64.

September 2018 2.1.3 Update for addition of
support for LastUpdated
optional parameter for

6

vwilliams
Highlight

vwilliams
Highlight

Revision Date Version
Description of
Change
GetPropertySubscrip-
tions in the
SubscribedPropsMgr
(Subscribed Properties
Manager). The C SDK
now supports the
Software Content
Management (SCM)
Edge Extension. See the
ThingWorx SCM Edge
Extension for the
ThingWorx Edge C SDK
Developer’s Guide for
details about this
extended capability for
the C SDK.

April 2018 2.1.2 Added information about
setting up a custom set of
cipher suites to use with
OpenSSL and the C SDK
and a note about
additional logging
(DEBUG builds only) for
staging directory failures
when transferring files.

January 2018 2.1.0 Added the new feature of
compression for all
WebSocket
communications,
including file transfers.

September 2017 2.0.0 Added a new chapter on
Edge Extensions and
organized all the security
information into a
separate chapter. The
OpenSSL v.1.0.2k is now
provided with the C SDK.
Revised topics for that.
Added the new feature
where the C SDK prints

7

Revision Date Version
Description of
Change
version information on
startup.

June 2017 1.5.2 Minor edits to fix typos.
May 2017 1.5.1 Added a tip about using

twDict with the new
Foreach iterator to
process entries in a list or
dictionary. instead of
twList.
AxTLS v.2.1.2 unable to
connect to to SSLTomcat
servers that do not specify
pathLenConstraint
in their root certificate
(which include PTC
Cloud Services
production instances of
ThingWorx). Added
Caution note to the
section, Using SSL/TLS
for Security
on page 72.

May 2017 1.5.0 Updated information
about file transfer
timeouts and a new
deadband push type. See
the section, Defining
Properties
on page 41, for
information about the
new push type.

April 2017 1.4.1 Added note about tick
resolution ()Initializing
the Tunnel Manager
(Optional)
on page 62 and the
section, Running the C
SDK on Windows-based
Operating Systems
on page 70.

8

Revision Date Version
Description of
Change

March 2017 1.4.0 Updated the version of
AxTLS to 2.1.2. Replaced
the existing build
information with
information about
building with CMake.
Added section about
Synchronized State
Handler and updated the
section about the
Subscribed Properties.
Updated the section on
InfoTables. Added note
about avoiding a possible
deadlock in Linux by
NOT calling twList_
Remove from within a
foreach handler.
Added a subsection about
lost messages to the
section, Handling Offline
Messages
on page 36.

December 2016 1.3.4 Added Caution about
using twApi_
BindThingWithout
DefaultServices.
See the section, Binding
Your Entities
on page 60.

December 2016 1.3.3 Added information about
bulk binding to the
section Binding Your
Entities
on page 60, support for
libcfu, the ForEach
iterator for the tw_List
API, use of twMap
instead of twList to
improve performance,

9

Revision Date Version
Description of
Change
andd the addition of a list-
backed twMap and
twDict.

June 2016 1.3.2 Added workaround for
Known Issue for Apache
Tomcat 8.0.35 and
ciphers that were disabled
in that release.

January 2016 1.3.1 Release fixed issues.
Minor documentation
edits, no major changes.

October 2015 1.3.0 Changed file name
list.h to twList.h
and added notes about the
change to the default
value for the socket read
timeout in
twDefaultSet
tings.h. Added the
order of preference for
proxy authentication
types.

March 2015 1.2.0 Initial version of this
guide. Included new
features for releases 1.1.0
and 1.1.1 in addition to
1.1.2. See the release
notes for details.

10

About this Guide

ThingWorx offers Software Development Kits (SDKs) for Edge devices,
machines, and systems in several programming languages. These SDKs allow
companies to incorporate connectivity functionality into their products, and to
easily connect those products to an instance of ThingWorx platform. These SDKs
can either be implemented as a gateway to several connected products, or be
embedded directly within a product on a one-to-one basis.
All ThingWorx Edge SDKs share a common reference implementation and
provide a secure communication channel to an instance of ThingWorx platform,
allowing a machine/device to be a full participant in a ThingWorx IoT solution.
This document describes how to use the ThingWorx Edge C SDK. The complete
API reference (javadoc) is available in the C SDK bundle.

Pre-requisites
This document assumes that you have a solid background in the C/C++
programming language. Further, it assumes that you have had at least basic
training in ThingWorx. For example, you know how to use the ThingWorx
Composer and understand the main concepts of things, data shapes, properties,
events, and services.
To develop an application using the C SDK, you need to have a C/C++
development environment. No specific compiler version is required, but the
compiler must be C89 (the C language spec) compatible. You can use CMake,
version 2.6.1 or later to build projects or make files, which then are used to build
the applications that you develop with the C SDK.
To get started, it is recommended that you review the sample projects provided in
the SDK. To use these examples, you can use any IDE to build them with CMake.
For information about the versions of Visual Studio that you can use with the C

11

SDK, see the ThingWorx Edge and Connection Services Compatibility Reference,
which is available on the ThingWorx Edge Reference documents page of the PTC
Support site.

Technical Support
Contact PTC Technical Support via the PTC Web site, phone, fax, or e-mail if you
encounter problems using your product or the product documentation.
For complete details, refer to Contacting Technical Support in the PTC Customer
Service Guide. This guide can be found under the Related Resources section of the
PTC Web site at:
http://www.ptc.com/support/
The PTC Web site also provides a search facility for technical documentation of
particular interest. To access this search facility, use the URL above and search the
knowledge base.
You must have a Service Contract Number (SCN) before you can receive
technical support. If you do not have an SCN, contact PTC Maintenance
Department using the instructions found in your PTC Customer Service Guide
under Contacting Your Maintenance Support Representative.

Documentation for PTC ThingWorx Products
You can access PTC ThingWorx documentation, using the following resources
available through the PTC Support site:

• PTC ThingWorx Edge SDKs and WebSocket-Based Edge MicroServer Help
Center — This Help Center includes documentation for all of the ThingWorx
Edge SDKs and for the ThingWorx WebSocket-Based Edge MicroServer (WS
EMS). You can browse the entire documentation set, or use the search
capability to perform a keyword search. The Help Center contains all the
release notes for all of the ThingWorx Edge SDKs and WS EMS.

• PTC ThingWorx Connection Services Help Center — This Help Center
includes documentation for the ThingWorx Connection Server, the ThingWorx
AWS IoT Connector, and the ThingWorx Azure IoT Hub Connector. You can
browse the entire documentation set, or use the search capability to perform a
keyword search.

• PTC ThingWorx Help Center — This Help Center includes documentation for
the ThingWorx platform, ThingWorx Composer, and ThingWorx Mashup
Builder. You can browse the entire documentation set, or use the search
capability to perform a keyword search.

• PTC ThingWorx Utilities Help Center.— This Help Center includes release
notes for each release of the utilities and all the information you need to use
these out-ot-the-box utilities and applications.

12 Edge C SDK Developer’s Guide

http://www.ptc.com/support/
http://support.ptc.com/help/thingworx_hc/thingworx_edge_sdks_ems/
http://support.ptc.com/help/thingworx_hc/thingworx_edge_sdks_ems/
http://support.ptc.com/help/thingworx_hc/thingworx_cx_services/
http://support.ptc.com/help/thingworx_hc/thingworx_8_hc/
http://support.ptc.com/cs/help/thingworx_hc/thingworxutil_8_hc/

Note
With the 8.3.0 release of ThingWorx Utilities, ThingWorx Asset Management
and ThingWorx Alert Management have been deprecated and are no longer
being developed. They are still included in the 8.3.0 release to support existing
customers and will be removed in a future release. Asset and Alert
Management functionality has been improved and is now part of the Asset
Advisor package. New and existing customers are advised to use Asset
Advisor in place of these utilities. Current ThingWorx Utilities customers
should contact their PTC sales representative for information about moving to
Asset Advisor. See also the release notes for v.8.3.0 of ThingWorx Utilities for
information about the changes in packaging for the 8.3.0 release of ThingWorx
Utilities.

• PTC ThingWorx Reference Documentation — The Reference Documents
pages provide access to the PDF documents available for all PTC ThingWorx
products. You can search for documentation in multiple ways. See the online
documentation for searching the portal.

A Service Contract Number (SCN) is required to access the PTC
documentation from the Reference Documents website. If you do not know
your SCN, see “Preparing to contact TS” on the Processes tab of the PTC
Customer Support Guide for information about how to locate it: http://support.
ptc.com/appserver/support/csguide/csguide.jsp. When you enter a keyword in
the Search Our Knowledge field on the PTC eSupport portal, your search
results include both knowledge base articles and PDF guides.

Comments
PTC welcomes your suggestions and comments on our documentation. To submit
your feedback, you can:

• Send an e-mail to documentation@ptc.com. To help us more quickly address
your concern, include the name of the PTC product and its release number
with your comments. If your comments are about a specific help topic or
book, include the title.

• Click the feedback icon in any ThingWorx Help Center toolbar and complete
the feedback form. The title of the help topic you were viewing when you
clicked the icon is automatically included with your feedback.

Terminology Used in This Document
The following table lists and defines terms that as they are used in this document
and the ThingWorx C SDK environment:

About this Guide 13

https://support.ptc.com/help/thingworx_hc/thingworx_utilities_8_hc/en/#page/ThingWorx_Utilities%2FConverge_WhatsNew_8_3_0.html%23
https://support.ptc.com/appserver/cs/doc/refdoc.jsp
http://support.ptc.com/appserver/support/csguide/csguide.jsp
http://support.ptc.com/appserver/support/csguide/csguide.jsp
mailto:documentation@ptc.com

Term Definition
ThingWorx
platform

An instance of the ThingWorx application server that
communicates with remote devices. This server is also referred
to as “the platform” or “an instance of ThingWorx platform”.

EdgeThing
(ET)

An instance of “Thing” on a remote system that inherits the
properties, services, and events of a pre-defined
EdgeThingTemplate. Even though C does not have the concept
of an object, the ThingWorx C SDK supports the construction of
a Thing by managing a collection of these capabilities under a
single “Thing” name. This collection is recognized as an
EdgeThing and appears to ThingWorx platform as an object that
can be manipulated.

EdgeThing-
Template
(ETT)

A collection of properties, services, and events that provide
functionality to support a specific activity or hardware device.
All EdgeThingShape-based Things have one
EdgeThingTemplate.

EdgeThing-
Shape (ETS)

A collection of properties, services, and events that provide
functionality to support a specific activity or hardware device.
More than one EdgeThingShape’s functionality can be used in
conjunction with a single EdgeThingTemplate. This behavior is
similar to the Composite Pattern, allowing multiple
EdgeThingShapes to be compounded into a single EdgeThing at
runtime.

Edge
Extension

A collection of EdgeThingShapes used in an
EdgeThingTemplate that defines one or more Edge things in
ThingWorx.

14 Edge C SDK Developer’s Guide

1
Introducing the ThingWorx Edge C

SDK
Installing and Navigating the Directories of the C SDK..19

This section provides an introduction to the ThingWorx Edge C SDK, explains its
purpose, requirements for using it, and main features. It then explains how to
install the SDK and provides a table that shows the directories and files in the
installation. Finally, this section provides a Getting Started section, which contains
an overview of the process for creating an application using this SDK. This
process references later sections of this document where you can find more
details.

About the C SDK
The ThingWorx Edge C SDK is a lightweight, but fully functional implementation
of the ThingWorx ™AlwaysOn protocol. It is designed to minimize memory
footprint while making it easy to integrate applications into the ThingWorx
distributed computing environment of the Internet of Things (IoT). The goal of the
C SDK is to make creating applications that use it simple, but to also give
developers enough flexibility to create very sophisticated applications. For
example, the SDK contains a simple “tasker” framework that you can use to call
functions repeatedly at a set interval. You can use the tasker framework to drive
not only the connectivity layer of your application, but also the functionality of
your application. However, it is not required to use the tasker at all. The API is
thread safe and can be used in a complex, multi-threaded environment as well.
Other examples of this flexibility are highlighted in this document.

15

Note
The ThingWorx C SDK assumes the use of the C language as defined by the
ANSI C89 specification (http://www.open-std.org/jtc1/sc22/wg14/www/
projects#9899).

Purpose
The primary functions of the C SDK are as follows:
• Establish and manage a secure AlwaysOn connection with an instance of

ThingWorx platform. This includes SSL/TLS negotiation, duty-cycle
modulation, and connection maintenance such as re-establishing a connection
after network connectivity is lost and restored.

• Enable easy programmatic interaction with the properties, services, and events
that are exposed by entities running on ThingWorx platform.

• Implement a callback infrastructure that makes it easy to expose a set of
properties and services to ThingWorx platform. These properties and services
can be surfaced from multiple entities. When a request is made from
ThingWorx platform for a registered property or service, a callback is made to
a function that you supply during the registration process.

The C SDK uses callback functions to notify your application of requests for
property reads and writes as well as requests to execute a service. The callback
function signatures are defined in the twApi.h file. Your application can register
properties and services (and their metadata) with the API. The metadata is used
when browsing remote entities from ThingWorx Composer, making it simple to
import functionality created in your application as a thing or thing template into
your application model.
The properties, services, and events for ThingWorx platform-side things are easily
accessed through appropriate API calls: twApi_ReadProperty/twApi_
WriteProperty, twAPI_InvokeService, and twApi_FireEvent,
respectively.

Features
The C SDK supports the following functionality that allows your machine, device,
or application to work with ThingWorx platform:
• Secure Connections—As of v.2.0.0,.the C SDK provides the OpenSSL library

and defaults to rejecting self-signed certificates. It also defaults to building
with these binaries. It also provides a template for you to use if you want to
use another SSL/TLS implementation in your application. The C SDK
supports client and server certificate validation. You can enable or disable
SSL/TLS certificate validation.

16 Edge C SDK Developer’s Guide

http://www.open-std.org/jtc1/sc22/wg14/www/projects#9899
http://www.open-std.org/jtc1/sc22/wg14/www/projects#9899

• Security for Passwords—As of v.2.2.0, the C SDK uses a callback function to
retrieve an Application Key, digest, certificate password, or proxy user
password, or a passphrase for a keystore. This change improves the security of
these sensitive pieces of information. See Initializing the API Singleton on
page 57 for information on using the callback to retrieve an Application Key
for authentication with ThingWorx platform.

• Compression—As of v.2.1, the C SDK supports WebSocket compression at
the edge for all WebSocket communications, including file transfers. The zlib
compression utility is used to compress and extract files from a ZIP archive.
For the version of zlib, see the release notes for v.2.1 of the C SDK.

• Edge Extensions — Provide building blocks of functionality that enable you
to create re-usable components. For example, a component that parses files.
For more information see [Missing cross reference text].

• Software Content Management (SCM) Edge Extension — As of v.2.1.3, the C
SDK includes an Edge Extension that supports ThingWorx SCM capability to
create and deploy a package that contains a script to be run on the edge device.
Any scripting language is supported, as long as the edge device has the
executable for that scripting language installed. For example, you could use
Python, Javascript, or nodejs.

• File transfer — The file transfer functionality of the C SDK allows browsing
of remote directories and files browsing on an instance of ThingWorx
platform, and permits bidirectional file transfer between an edge device and an
instance of the platform.

• Data Shapes — You can create Data Shape definitions that model types of
metadata for a remote machine/device.

• Tunneling — The tunneling functionality of the C SDK allows you to
establish secure, firewall-transparent application tunnels for applications that
use TCP, such as VNC and SSH.

• Proxy settings — If your environment requires edge devices to communicate
through a proxy server, you can set up your application to connect to
ThingWorx platform through a proxy server.

• Offline message storage — Enabled by default, this features queues outgoing
messages if the network is down or if the duty cycle is in the “off” state.

• Subscribed properties — Events can subscribe to changes in property values
and in aspects of properties.

• Easy build environment — The C SDK supports building with CMake,
enabling you to build an application for multiple environments.

• Version information — On startup, the C SDK prints the version number of
the C SDK, the SSL/TLS library in use, and its version number. If FIPS mode
is enabled, it prints FIPS Enabled.

Introducing the ThingWorx Edge C SDK 17

Note
As of release 2.2.1, the non-FIPS distribution bundles of the C SDK include
OpenSSL 32– and 64–bit libraries, version 1.0.2q, which, on Windows platforms
are based on the Visual Studio 2015 runtime library. The FIPS distribution
bundles include 32–bit OpenSSL libraries, v.1.0.2l, which are based on the Visual
Studio 2012 runtime library. In addition, the axTLS library is no longer included
in any of the distribution bundles..

18 Edge C SDK Developer’s Guide

Installing and Navigating the Directories
of the C SDK
Installation
To install the ThingWorx Edge C SDK, go to the PTC Support site (http://www.
ptc.com/support/), Software Downloads page, and download the bundle to your
computer, and extract the files. After you extract the files, the top level directory is
called <MED-nnnnn-CD-055_<datecode>_C_SDK-v.v.v.bbbb where
v.v.v.bbbb is the release number plus the build number. For example, 2-2-
1-108 is the release number 2.2.1, with build number 108.

Note
As of v.2.2.1, the non-FIPS distribution bundles of the C SDK include
OpenSSL 32– and 64–bit libraries, version 1.0.2q, which, on Windows
platforms are based on the Visual Studio 2015 runtime library. The FIPS
distribution bundles of this SDK include OpenSSL 32–bit libraries, v.1.0.2l,
which are based on the Visual Studio 2012 runtime library.

In addition, the axTLS library is no longer included in the C SDK distribution
bundles as of release 2.2.1.

Directories and Files
The following table lists and briefly describes the directories and files of the C
SDK. Note that the notation ./ indicates the top-level directory, which is named
for the release, c-sdk-v.v.v.bbbb and <version> in the second-level
directory replaces v.v.v.bbbb.

Introducing the ThingWorx Edge C SDK 19

http://www.ptc.com/support/
http://www.ptc.com/support/
vwilliams
Highlight

vwilliams
Highlight

This Directory Contains See Also
./c-sdk-
<version>

The file, version.properties,
which provides the major, minor, and
revision numbers that comprise the
SDK version.

The file, CMakeLists.txt, which
provides the options for building a C
SDK application. Note that such a file
is provided for each of the C SDK
examples.A README_

BUILDING.txt file provides
instructions for building the SDK with
CMake

This directory also contains the
subdirectories, doc, examples, src,
and test. The rest of this table
describes the contents of these main
directories.

Building Your Applications with
CMake on page 103

./c-sdk-
<version>/doc

The PDF files for this document and the
release notes; also the mainpage.md
file for the Doxygen documentation.

The ThingWorx Edge SDKs and WS
EMS Help Center, available at PTC
ThingWorx Support site, http://support.
ptc.com/help/thingworx_hc/thingworx_
edge_sdks_ems/

./c-sdk-
<version>/doc/
html

All the files and the search
subdirectory for the Doxygen
documentation.

The mainpage.md file provides an
overview of the C SDK source code
organization. To view the Doxygen
documentation in a browser, open any
of the *.html files in the html
directory.

./c-sdk-
<version>/
examples

Subdirectories for the various
examples: ExtUseExample,
simpleextlib, SteamSensor,
and warehouseextlib. Each
subdirectory contains the source files
for the example. Two of the examples
also provide an XML file that contains
entities for the example. You need to
import this XML file into ThingWorx
platform (using ThingWorx Composer)
before running the example. Finally
each example provides the
CMake.txt file needed to build the
example with CMake.

./c-sdk-
<version>/src

This directory contains subdirectories
that contain all of the source code (*.c
and *.h files) for the C SDK. For
details, see the table below.

./c-sdk-
<version>/test

This directory contains subdirectories
for the test suite for the C SDK. For
details, see the table, below.

20 Edge C SDK Developer’s Guide

http://support.ptc.com/help/thingworx_hc/thingworx_edge_sdks_ems/
http://support.ptc.com/help/thingworx_hc/thingworx_edge_sdks_ems/
http://support.ptc.com/help/thingworx_hc/thingworx_edge_sdks_ems/

Source Files Directory (src)

This Subdirectory Contains See Also
../src/api The API source (*.c) and

header (*.h) files.
twApi.c, twApi.h.

Initialize the API
Singleton on page 57

twDefinitions.h
contains the enumerated
message types, message
codes (status, errors), as
well as type definitions
(characteristic, BaseType,
entityType).

twPrimitiveStructure on
page 87
Base Types on page 88
twInfoTable on page 89
CallBack Function Return
Codes on page 133

twErrors.h contains
definitions for different
types of errors, including
websocket, messaging,
primitive/infotable, api,
tasker, logger, utils,
system socket, file
transfer, tunneling, and
managed property. It also
contains the #defines
for the msgCodeEnum
errors.

C SDK Error Codes on
page 117

twProperties.h
contains definition
structures and metadata
functions for creating
properties.
twProperties.c
contains the
implementations of
functions for creating and
deleting property
definitions.

Register Properties and
Services on page 59
Property Access
Callbacks on page 92
Service Callbacks on
page 94
SDK Application-
Initiated Interaction on
page 96

twServices.h
contains service
definition structures and
metadata functions for
services.
twProperties.c

Introducing the ThingWorx Edge C SDK 21

Source Files Directory (src) (continued)
This Subdirectory Contains See Also

contains the
implementations of
functions for creating and
deleting services.
twVersion.h contains
the #define for the
version of the C SDK.
twVersion.h.tem
plate contains

../src/config Two configuration files,
twConfig.h and
twDefaultSet
tings.h. As its name
implies, the
twDefaultSet
tings.h file contains
the default settings for
many of the C SDK,
parameters, should you
decide to use default
values and not include
your own specific settings
in your project. You can
also change values here
so that you have different
default values for your
projects.
The twConfig.h file is
provided should you need
to override common
settings provided in the
CMakeList.txt file.
You can also use it if you
are using Windows
Solution (sln) or gcc
Makefiles (the use of sln
and make files is
deprecated). Use this file
only if you are not using
one of these provided

Configuring Components
for an Application on
page 33
Building Your
Applications with CMake
on page 103

22 Edge C SDK Developer’s Guide

Source Files Directory (src) (continued)
This Subdirectory Contains See Also

files to do per project
configuration. Note that
the settings in these files
apply to ALL of your
projects that use the SDK.

Note
You can also edit
CMake options at any
time by editing them
in the CMakeCache.
txt files created when
you generate your
CMake build.

../src/
fileTransfer

This directory contains
the source and header
files for the file transfer
functionality of the C
SDK,
twFileManager.c,
twFileManager.h,
twFileTransfer
Callbacks.c, and
twFileTransfer
Callbacks.h.

Initializing the File
Manager (Optional) on
page 61
Create a File Transfer
Event Handler (Optional)
on page 53
File System Functions on
page 115

../src/messaging The following source and
header files:
• twBaseTypes.c,

twBaseTypes.h
contain the definitions
of the Base Types of
the SDK.

• twInfoTable.c,
twInfoTables.h
contain the definitions
of functions related to
creating an infotable
with the SDK.

• twMessages.c,
twMessages.h

twPrimitiveStructure on
page 87
Base Types on page 88
twInfoTable on page 89
Handling Offline
Messaging on page 36

Introducing the ThingWorx Edge C SDK 23

vwilliams
Highlight

Source Files Directory (src) (continued)
This Subdirectory Contains See Also

• twMessaging.c,
twMessaging.h

../src/porting Source and header files
that contain wrappers for
OS-specific functionality
(twIos.c, twIos.h,
twLinux.c,
twLinux.h,
twLinux-
opensll.h,
twMarvellEx
tras.c,
twMarvelThreads.c
twOSPort.h,
twPThreads.c,
twThreads.h,
twTlSimplelink.c,
twTlSimplelink.h,
twWin32Threads.c,
twWindows.c,
twWindows.h,
twWindows-
openssl.h)

Porting to Another
Platform on page 108

../src/stubs The stubs files in this
directory are for
compiling.

Building Your
Applications with CMake
on page 103

../src/
subscribedProps

Source and header files
(subscribedProps.c
and
subscribedProps.h)
that contain the
functionality to support
subscribed properties.

Defining Properties on
page 41

../src/thirdParty Third-party libraries for
the C SDK, including
cJSON, libcfu, ntlm,
openssl-
<version>_fips-
<version>_sdk,

For OpenSSL, see Using
SSL/TLS for Security on
page 72

24 Edge C SDK Developer’s Guide

Source Files Directory (src) (continued)
This Subdirectory Contains See Also

tomcrypt, and
wildcard.

../src/tls The files needed to use
SSL/TLS with the SDK.

Using SSL/TLS for
Security on page 72

../src/tunneling The source
(twTunnelMana
ger.c) and header
(twTunnelMana
ger.h) files for the
Tunneling feature.

Configuring Application
Tunneling on page 35
Initializing the Tunnel
Manager (Optional) on
page 62

Introducing the ThingWorx Edge C SDK 25

Source Files Directory (src) (continued)
This Subdirectory Contains See Also
../src/utils The source and header

files for utilities provided
by the SDK:
•

cryptoWrap
per.c,
cryptoWrapper.h

• list.c (for doubly-
linked list utilities)

• stringUtils.c,
stringUtils.h

• twDict.c,
twDict.h

• twHttpProxy.c,
twHttpProxy.h

• twList.h

• twLogger.c,
twLogger.h

• twMap.c,
twMap.h

• twNtlm.c,
twNtlm.h

•
twOfflineMsg
Store.c,
twOfflineMsg
Store.h

• twTasker.c,
twTasker.h

Using the Utilties of the C
SDK on page 65
Handling Offline
Messaages on page 36
Using Lists, Maps, and
Dictionaries on page 67
Configuring the Tasker on
page 34

tw-c-sdk/src/
websocket

The source
(twWebsocket.c) and
header
(twWebsocket.h) files
for the Websocket Client
(abstraction layer).

Interacting with
ThingWorx platform on
page 86
WebSocket Error Codes
on page 118

The following table lists and briefly describes the contents of the test
subdirectory, which contains all the source code files, entity files, and
CMakeList.txt files needed to build and run the tests.

26 Edge C SDK Developer’s Guide

Test Subdirectory

This Subdirectory Contains
chart-js-client chart-js-client.c and chart-

js-client.h
etc Subdirectories and files to support the

test applications, including XML files
that contain entities used in the tests.
The entities need to be imported into
ThingWorx platform for the tests to run
successfully.

graphite-c-client graphite-client.c and
graphite-client.hl This test is a
simple, pure C client for Graphite that
allows you to send metrics to Graphite/
Carbon, using Graphite plain-text
protocol.

include Header files to support the test utilities.
integration Integration tests for the C SDK that test

different features, including file
transfers, FIPS, offline message
storage, property writes, services, and
more.

integration_slow BindingIntegrationTests
Slow.c, which tests multiple
combinations of bindng and
connecting.
OfflineMsgStoreIntegration
TestsSlow.c, which tests filling up
the offline message store and flushing
it, in different ways.

performance Performance tests that exercise binding,
file transfer, ListForeach, property
writes, and service execution. Also
includes Kepware tests that represent
high bandwidth throughput of
properties (up to 10000 unique integer
properties pushed up to a single thing in
under one second).

src .
TestServices.c,

Introducing the ThingWorx Edge C SDK 27

Test Subdirectory (continued)
This Subdirectory Contains

TestUtilities.c,
crossPlatformTestSupport.c,
testmain.c, and
twPrimitiveUtils.c

unit Subdirectories and files for unit tests of
twApi, twFileManager,
twOfflineMessageStore, and
more. Also contains the
CMakeLists.txt file that is needed
to build the tests.

unity The Unity Project test framework for C
from MIT.

CMakeLists.txt File required for building the test suite
using CMake.

28 Edge C SDK Developer’s Guide

2
Getting Started

Configuring Components of the C SDK ...33
Handling Offline Messages ..36
Minimizing Code Footprint..38

The best place to start is by examining the examples provided in the tw-c-sdk/
examples directory. In addition to the *.c and *.h files, each example
subdirectory contains the CMakeLists.txt file that you need to build the
examples using CMake (see Building Applications with CMake on page 103 for
more information). The SteamSensor and ExtUseExample also contain an
import subdirectory, in which you will find the XML file that you need to
import into your ThingWorx platform prior to running the example. The XML
files set up everything needed to run and view the results of these examples on
ThingWorx platform.
As of v.2.0.0, two examples of Edge Extensions are provided, simpleextlib
and warehouseextlib, and the ExtUseExample shows how to load these
two example extensions. In addition, the SteamSensor example was rewritten to
use the macros that were introduced with the Edge Extensions. For information
about these examples, see .[Missing cross reference text].

ThingWorx Configuration
The SDK requires that a RemoteThing be created in ThingWorx in order to
communicate. Creating a RemoteThing is as simple as creating a thing that is
derived from one of the RemoteThing thing templates and optionally has an
Identifier. If an Identifier is supplied, the SDK must use the same identifier as
well. Without an Identifier, the RemoteThing is referenced by name. The
Identifier may be used if a device has access to its serial number via firmware, for
instance.

29

If many Things are to be created with the same properties, services, and events, it
is recommended that a Thing Template be derived from one of the supplied
RemoteThing templates. It will be much easier to maintain the Things and will
require less memory on ThingWorx platform. One way to do this is to create a
thing, using a RemoteThing template, and then browse the client application
created with the SDK for its properties, services, and events. Once this work has
been completed, create a template based on this thing. Then use the template
instead of recreating all the properties, services, and events on each thing.

Application Development
This section provides an overview of the main steps for developing an application
using the C SDK.

1. Configure the components that your application will use. The components
may include the following:

• Tasker (optional, Configuring the Tasker on page 34)
• File Transfer (Configuring File Transfers on page 34)
• Application Tunneling (Configuring Tunneling on page 35)
• Handling of Offline Messages (Handling Offline Messages on page 36)
• Any additional settings (Configuring Additional Settings on page 35)

2. If you need to minimize code footprint, follow the instructions in the section,
Minimizing Code Footprint. on page 38

3. Define the properties, events, and services that you want to expose to the
server and create the required callback functions. Callback functions can be
created to handle individual properties and services, or a single property or
service callback can be created to handle all of those types of entities. Refer to
the following sections:

• Defining Properties on page 41
• Defining Events on page 48
• Define Property Callback Functions on page 48
• Defining Service Callback Functions on page 50

4. If your application requires, set up the following:

• Tasks—See Create Your Tasks (Optional) on page 52.
• Bind Event Handler—See Create a Bind Event Handler (Optional) on page

53.
• Synchronized State Handler—See Implementing a Synchronized State

Handler on page 55
• Event Handler for File Transfers—See Create a File Transfer Event

Handler (Optional) on page 53.

30 Edge C SDK Developer’s Guide

• Event Handler for Tunneling—See Create a Tunnel Event Handler
(Optional) on page 54.

• SSL/TLS for secure communications—See .Using SSL/TLS for Security
on page 72 for details.

5. Initialize the API Singleton on page 57.

Note
This initialization function initializes the Subscribed Properties Manager
automatically.

6. Register Properties and Services on page 59.

Register Events on page 60
7. Bind Your Entities on page 60 (Things).
8. If your application requires it, initialize the following components:

• File Manager — Refer to Initialize the File Manager (Optional) on page
61.

• Tunnel Manager — Refer to Initialize the Tunnel Manager (Optional) on
page 62.

9. Connect to the Server and Initiate Tasks on page 68.
10. Once your connection is alive and active, any requests made on the server for

registered properties and services are automatically forwarded to your
application, and the appropriate callback function is called. For information
about server-initiated actions and callback functions, refer to Server-Initiated
Interaction on page 92.

Helper functions are available to push properties to the server, execute a
service on another entity in the system, or trigger an event on the server. Refer
to SDK Application-Initiated Interaction on page 96.

11. Build your application using CMake. Follow the instructions in .Building
Applications with CMake on page 103

Getting Started 31

Note
As of v.2.1, WebSocket compression is enabled by default for ALLWebSocket
communications, including file transfers and pushing property values to
ThingWorx platform. If you need to disable compression, use the twApi_
DisableWebSocketCompression() function. You can find information for
the function in the files, twApi.h and twApi.c in the ../src/twApi/
subdirectory of your C SDK installation.

32 Edge C SDK Developer’s Guide

Configuring Components of the C SDK
Once you have decided which components your application requires, you must
define the components as explained in this section. This section assumes that you
will use CMake to build your application.
Configure the desired components to include in a CMakeLists.txt file, and
verify that the SDK supports your platform/OS. If not, refer to the sections on
building (Building Applications with CMake on page 103) and porting (Porting to
Another Platform on page 108), which describes the requirements and process for
porting the SDK.
Provided within the SDK examples directory are example applications that
demonstrate various capabilities of the SDK. Within each of those directories are a
win32, osx, and a linux subdirectory, each with their own source code and
CMakeLists.txt file. The section,Building Applications with CMake on page
103 includes a table that lists and briefly describes the options that you can set at
the command line with CMake. It is HIGHLY RECOMMENDED that you use
one of these examples to gain an understanding of what source files and
configuration settings need to be included in your build environment.
To learn about the configuration settings for applications, open the following files
in the src/config/ subdirectory of the C SDK installation:
• twConfig.h— This file provides a place for general settings for C SDK

applications, including offline message store. Any settings in this file will
apply to ALL of your projects. To override the settings for specific
applications, use a CMakeLists.txt file to change the default
configuration. However, if you are NOT building with CMake, use this file to
configure the SDK for your application.

• twDefaultSettings.h— This file explains all of the configuration
settings for the C SDK. The comments in this file provide specific information
about the settings.

Note
Configuration affects the footprint and RAM usage of the SDK, and consequently,
any application built using the SDK.

Editing the CMakeLists.txt file is not required. You can set options from the
CMake command line. For example:
cmake =DMyOption=ON MyProjectFolder

OR
cmake -DUSE_OPENSSL=ON

Continue to the following configuration tasks:

Getting Started 33

• Configuring the Tasker on page 34
• Configuring File Transfers on page 34
• Configuring Tunneling on page 35
• Configuring Additional Settings on page 35

Configuring the Tasker
The built-in tasker is a simple round-robin execution engine that will call all
registered functions at a rate defined when those functions are registered. If using
a multitasking or multi-threaded environment you may want to disable the tasker
and use the native environment. If you choose to disable the tasker, you must call
twApi_TaskerFunction() and twMessageHandler_msgHandlerTask() on a
regular basis (every 5 milliseconds or so). Un-define this setting if you are using
your own threads to drive the API, as you do not want the tasker running in
parallel with another thread running the API.
To properly initialize the Tasker, you must define ENABLE_TASKER:
/*********************************/
/* Tasker Configuration */
/*********************************/
#define ENABLE_TASKER 1

The Windows-based operating systems have a tick resolution (15ms) that is higher
than the tick resolutions requested by the C SDK (5ms). For information about
achieving the best performance in a Windows-based operating system, see
Running on a Windows-based Operating System on page 70.
Back to top on page 33

Configuring File Transfers
The C SDK has full support for all the remote directory/file browsing capabilities
of ThingWorx platform as well as bidirectional file transfer. To use this
functionality, define ENABLE_FILE_XFER. This module will add ~15KB of
code space to your application, so severely constrained environments may want to
omit this functionality.
/*********************************/
/* File Transfer Configuration */
/*********************************/
#define ENABLE_FILE_XFER 1

As of v.2.1, the C SDK uses WebSocket compression (zlib) for all WebSocket
communications, including file transfers, by default. In general, leaving
compression turned on reduces bandwidth used by the edge application, but
requires more memory and CPU usage. Choose whether to leave compression
enabled, based on your the capabilities of your devices and on the available
bandwidth. If you need to disable compression, use the twApi_
DisableWebSocketCompression() function. This function is in the
twApi.c file, which is located in the ./src/api/directory of your C SDK

34 Edge C SDK Developer’s Guide

installation. Its description is in the twApi.h file, which is located in the
./src/api/ directory. To call the function, add it to your code after you
initialize the API (by calling twApi_Initialize() and where you configure
the API. For example:
/* Configure API */

...

tw_Api_SetSelfSignedOk();

twApi_DisableWebSocketCompression();

twApi_SetOfflineMsgStoreDir(offlineMsgStoreDir);

...

This example sets up an offline message store location and disables compression.
When the messages that are stored while the device is offline are eventually
transmitted, the messages will use more memory and CPU. Disabling compression
is useful if you have limited bandwidth or want to keep bandwidth costs down. .

Note
This example allows the use of a self-signed certificate. In general, use self-signed
certificates ONLY while developing and testing an application. In production, use
a highly secure connection.

Configuring Tunneling
The C SDK has full support for application tunneling. Application tunnels allow
for secure, firewall transparent tunneling of TCP client server applications such as
VNC and SSH. To use this functionality, you must define ENABLE_TUNNELING.
This module will add ~5KB of code space to your application, and upwards of
100KB RAM, depending on usage, so severely constrained environments may
want to omit this functionality.
a/*********************************/
/* Tunneling Configuration */
/*If defined, the tunneling system will be enabled.
*/
#define ENABLE_TUNNELING 1

The Windows-based operating systems have a tick resolution (15ms) that is higher
than the tick resolutions requested by the C SDK (5ms). For information about
achieving the best performance for tunneling in a Windows-based operating
system, see Running on a Windows-based Operating System on page 70.

Configuring Additional Settings
The C SDK has several settings that you can modify, based on the needs of your
application for things such as minimizing RAM usage or improving performance.
The defaults for these settings are found in the file src/config/

Getting Started 35

twDefaultSettings.h. In most cases you do not need to change these
settings. If you must change them, exercise caution when making the changes.
With the exception of TW_MAX_TASKS, all of the settings can be modified at
runtime by changing the appropriate setting in the global twcfg structure. The
structure definition can be found in src/config/twDefaultSettings.h.

Note
The default setting for DEFAULT_SOCKET_READ_TIMEOUT in
twDefaultSettings.h is 500 ms. If you are using SSL/TLS to connect to
ThingWorx platform and a websocket read times out in the middle of reading a
record, the SSL state is lost. As a result, the SDK tries to start reading the record
header again, and the operation fails. To detect this situation, check the log for the
SDK for the error, twTlsClient_Read: Timed out after X
milliseconds, and consider increasing the value of the DEFAULT_SOCKET_
READ_TIMEOUT. You can change the setting at runtime by modifying the value
of twcfg.socket_read_timeout.

Handling Offline Messages
The C SDK has multiple options for offline message storage. In general, offline
message storage will queue up outgoing request messages for later delivery if the
network is down or the duty cycle modulation component of the AlwaysOn
protocol happens to be in the “off” state. When offline message storage is enabled
and the device is offline, outgoing messages are placed in a queue, up to a limit of
OFFLINE_MSG_QUEUE_SIZE. When connectivity is re-established, all the
messages in this queue are sent out to the ThingWorx platform.
The default setting for offline message storage is that offline message storage is
enabled and will persist the messages to a file. If storage space is not available on
the device, you can still enable offline message storage that stores messages in
RAM only. For the smallest footprint, you can disable this feature.

Note
If you enable offline message store but limit the storage to RAM only, keep in
mind that, if there is a power outage or the system is shut down for any reason,
these messages will be lost and not delivered to the ThingWorx platform.

To configure offline message store, open either a CommonSettings file or the
file, twConfig.h, and add the following parameters:

36 Edge C SDK Developer’s Guide

• OFFLINE_MSG_STORE— To disable the feature, change the 2 to 0. To
enable it but store only in RAM, change the 2 to 1.

• OFFLINE_MSG_STORE_DIR— If you are using the feature and storing
messages in files, specify the directory in which you want to store the
messages.

• OFFLINE_MSG_QUEUE_SIZE— If you are using the feature, specify the
maximum size of the message queue (number of messages).

In both the RAM-based, and file-based offline message stores, when connectivity
is re-established all the messages in this queue are sent out to the ThingWorx
platform. Note that it is quite likely that all of the original messages will time out
while waiting for a response from the platform, so you will not receive any
indication or confirmation that these messages were successfully processed by the
platform. Also in either use case (RAM-based or file-based), if the total size of the
queued messages exceeds the limit defined in OFFLINE_MSG_QUEUE_SIZE,
any subsequent attempt to queue more messages will fail and those new messages
will be lost.
The structure for offline message store is defined in ./src/utils. A singleton
instance of this structure is automatically created when *
twOfflineMsgStore_Initialize() is called. You should not need to
manipulate this structure directly. You can make the following types of requests to
the offline message store:
• OFFLINE_MSG_STORE_FLUSH— Request to flush the offline message

store buffer.
• OFFLINE_MSG_STORE_WRITE— Request to write a message into the

offline message store.
As of release 1.3.3 of the C SDK, the offline message store is automatically
initialized by twApi_Initialize(). However, if your application requires a
more complex offline message store model, you can initialize it separately by
calling twOfflineMsgStore_Initialize(), and passing in the following
arguments:
• enabled—A boolean value to enable/disable the offline message store.
• filePath— The path to the offline message store directory.
• size— The maximum size of the offline message store.
If the initialization is successful, this function returns TW_OK. If not, it returns an
error (see twErrors.h for definitions of the errors).
The following additional functions are available for offline message storage as of
release 1.3.3:

• Specify the directory in which to store the offline messages —
twOfflineMsgStore_SetDir().

Getting Started 37

• Free memory that is associated with the offline message store singleton —
twOfflineMsgStore_Delete().

• Process requests to the offline message store — twOfflineMsgStore_
HandleRequest().

Lost Messages
If the connection to ThingWorx platform is lost and offline message store is
enabled, the messages currently waiting to be sent to ThingWorx are stored in the
offline message store, as configured. Once the application reconnects and
authenticates with ThingWorx platform again, the messages are sent based on
your configuration, as described above. However, if the ping timeout and
connection retries are exhausted, the SDK will disconnect and not reconnect
unless the application invokes twApi_Connect. Messages destined for
ThingWorx platform will be lost.
This situation may occur in an environment where network connectivity is
forcibly removed. To avoid the loss of messages, consider adjusting the setting for
retrying the connection to ThingWorx platform (connection_retries in
twApi_initialize()). In addition, if it is not already enabled, enable
automatic re-connection. To enable automatic re-connection, set
autoreconnect to true in twApi_initialize() so that the application
automatically tries to reconnect when a connection is lost.
If these changes do not resolve the situation, set the number of connection retries
to -1 (connection_retries= -1). The SDK will try indefinitely to
reconnect. Be aware that with these settings, it might appear that the application is
in an infinite loop. In reality, the SDK just is not able to connect and is constantly
retrying the connection.

Minimizing Code Footprint
To attempt to create the smallest possible code footprint, define TW_LEAN_AND_
MEAN. Using TW_LEAN_AND_MEAN disables optional, resource-consuming
entities, such as offline message storage, tunneling, and file transfer. The default
behavior is to remove all logging from the system.
Another way to minimize code footprint is to disable the resource-consuming
entities you do not require.
The following code example shows the definition for TW_LEAN_AND_MEAN:
/*********************************/
/* Minimize Code Footprint */
/*********************************/
/*
Attempts to minimize the code footprint at the
expense of functionality. Check your OS port
header file to see what is disabled.

38 Edge C SDK Developer’s Guide

*/
#define TW_LEAN_AND_MEAN

Tips for Minimizing Footprint and Maximizing Performance
The C SDK has several settings that can significantly impact code footprint and
performance. For performance, key among them is disabling verbose logging
mode. Verbose logging parses every message sent between your application and
ThingWorx platform. While extremely valuable for debugging, it can have a
significant impact on performance. It is recommended that you disable verbose
logging by calling twLogger_SetIsVerbose(FALSE);
Several areas impact code footprint. Support for connecting through HTTP
Proxies adds ~5KB to your final code size. If not needed, follow this example:
Suppose you are connecting over a cellular connection. To disable the support for
HTTP Proxies, use #undef ENABLE_HTTP_PROXY_SUPPORT.
In addition, support for NTLM proxies adds ~45KB of code. To disable this
support, use #undef USE_NTLM_PROXY.
File Transfer and Tunneling add ~15KB and 5KB respectively. You can disable
them, using #undef ENABLE_FILE_XFER and #undef ENABLE_
TUNNELING.
Finally logging itself adds ~20KB of code. Logging can be disabled with macros
in parts by defining the log functions as empty as follows:
#define TW_LOG(level, fmt, ...)
#define TW_LOG_HEX(msg, preamble, length)
#define TW_LOG_MSG(msg, preamble)

The twWindows.h or twLinux.h files provide examples of using TW_LEAN_
AND_MEAN to minimize the code footprint.
The SteamSensor example, SteamSensorWithMinimalFootprint, in the
/examples subdirectory of the installation shows how to set up an application
that minimizes the footprint. When updating properties, you can minimize
footprint by processing the property updates individually. To minimize the use of
bandwidth, process the property updates all at once. The example shows both
ways to update properties.
.

Getting Started 39

3
Steps for Setting Up Applications

Defining Properties..41
Defining Events...48
Define Property Callback Functions ..48
Define Service Callback Functions..50
Create Your Tasks (Optional)..52
Creating a Bind Event Handler (Optional) ..53
Create a File Transfer Event Handler (Optional)...53
Create a Tunnel Event Handler (Optional) ...54
Implementing a Synchronized State Handler ..55

What do you need to do to set up the application using the C SDK? This section
explains some of those steps, including defining the properties and services that
you want to expose to the server and implementing the required callback
functions. Callback functions can be used to handle individual properties and
services or a single property or service callback can be created to handle all of
those types of entities. This decision is left to the application developer.
Optionally, you may need to create tasks on page 52 as well as event handlers:
• Bind event handler on page 53, so the application can determine which

entities are bound to ThingWorx platform),
• File transfer event handler on page 53 for file transfers to and from

ThingWorx platform.
• Tunneling event handler on page 54 for open and close events.
• Synchronized state handler on page 55
The C SDK uses a callback mechanism to handle server-initiated requests to read
or write properties and invoke services. The signatures of the callback functions
and the registration functions themselves are found in the file, src/api/
twApi.h.

40 Edge C SDK Developer’s Guide

Defining Properties
In the ThingWorx environment, a property represents a data point, which has a
name, a value, a timestamp, and optionally, a quality. In ThingWorx platform,
properties can also have aspects, which provide additional details about the
property. Once a client application binds an entity to a corresponding
RemoteThing on the ThingWorx platform, you can associate properties with the
RemoteThing, using ThingWorx Composer.
The C SDK supports two types of properties, properties that do not have Remote
Binding Information ”aspects” and so-called subscribed properties that have
Remote Binding Information aspects that are displayed in ThingWorx Composer.
These aspects are described in the Property Definitions section below.
Two types of structures are used by the C SDK to define properties:
• Property Definitions (twPropertyDef) to describe the basic information

for the properties that are going to be available to the ThingWorx platform and
can be added to a client application.

• Property Values (twProperty) to associate the property name with a value,
timestamp, and quality.

The structures are defined in the file, twProperties.h.
The following example of a simple property structure from the Steam Sensor
example shows how the declaration of properties works:
/*****************
A simple structure to handle
properties.
******************/
struct {
double TotalFlow;
char FaultStatus;
char InletValve;
double Pressure;
double Temperature;
double TemperatureLimit;
twLocation Location;
char * BigGiantString;
} properties;

To store the values sent by ThingWorx platform, you must use a callback method
to either allocate a new variable or set the memory in an already allocated
variable. For information about registering callbacks for properties, refer to
Registering Properties and Services on page 59. For additional information, see
also Property Access Callbacks on page 92 and the sections on reading, writing,
and pushing properties in the section, SDK Application-Initiated Interaction on
page 96.

Steps for Setting Up Applications 41

Property Definitions
The basic information that you provide for a Property Definition includes the
following attributes:

• name— Specifies the name of the property that will appear in ThingWorx
Composer when users browse the related Thing while the platform is binding
to the Thing.

• description— Provides a description of the property that gives further
understanding of the meaning of the property.

• baseType— Specifies the type of the property. For a list of base types
supported by the SDK, refer to Base Types on page 88.

• aspects—Define the ways to interact with a property. All properties have
the following aspects:

○ isPersistent— Set to TRUE for the ThingWorx platform to persist
the value even if it restarts. It is extremely expensive to have persistent
values, so it is recommended to set this value to FALSE unless absolutely
necessary.

○ isReadOnly— Set to TRUE to inform the ThingWorx platform that this
value is only readable and cannot be changed by a request from the server.

○ dataChangeType—Describes how the ThingWorx platform responds
when the value changes in the client application. Subscriptions to these
value changes can be modeled in the ThingWorx platform. If nothing
needs to react to the property change, set this value to NEVER. The
possible values are:

Value Description
ALWAYS Always notify of the value change even if the new value is

the same as the last reported value.
VALUE Only notify of a change when a newly reported value is

different than its previous value.
ON For BOOLEAN types, notify only when the value is

true.
OFF For BOOLEAN types only, notify when the value is

false.
NEVER Ignore all changes to this value.

○ dataChangeThreshold—Defines how much the value must change
to trigger a change event. For example 0 (zero) indicates that any change
triggers an event. A value of 10 (ten) for example would not trigger an
update unless the value changed by an amount greater than or equal to 10.

42 Edge C SDK Developer’s Guide

○ defaultValue— The default value is the value that the ThingWorx
platform uses when the RemoteThing connected to the device first starts
up and has not received an update from the device. The value is different
based on the different value for each base type.

• Only properties defined as subscribed properties have the following Remote
Binding aspects:

○ cacheTime— The amount of time that the ThingWorx platform caches
the value before reading it again. A value of -1 informs the server that the
client application always sends its value and the server should never go
and get it. A value of 0 (zero) indicates that every time the platform uses
the value, it should go and get it from the client application. Any other
positive value indicates that the server caches the value for that many
seconds and then retrieves it from the client application only after that time
expired.

Note
For the client application to set the value every time it changes, set this
value to -1.

○ pushType— Informs the ThingWorx platform how the client application
pushes its values to the platform. The possible values are as follows:

Select For the Client to
ALWAYS Send updates even if the value has not changed.

It is common to use a cacheTime setting of -1 in this
case.

NEVER Never send the value, which indicates that ThingWorx
platform only writes to this value.It is common to use a
cacheTime setting of 0 or greater in this case.

Steps for Setting Up Applications 43

Select For the Client to
VALUE Send updates only when the value changes. It is

common to use a cacheTime setting of -1 in this
case.

Note
As of v.1.5.0, if a property is using this push type and
only the quality for that property changes, the update is
propagated to ThingWorx platform.

DEADBAND Added to support KEPServer, this push type is an
absolute deadband (no percentages). It provides a
cumulative threshold, such that the Edge device should
send an update if its current data point exceeds
Threshold compared to the last value sent to ThingWorx
platform. It follows existing threshold fields limits.

Properties need to be registered so that ThingWorx platform can browse them.
Refer to Registering Properties and Services on page 59.

Property Values
You can define the property value in two ways – one with specific settings for
timestamp and quality and one with the default quality.

Note
Updating a property value does not send the value to the ThingWorx platform. To
send the value to the platform, the twSubscribedPropsMgr_
PushSubscribedProperties function must be called.

Helper functions for creating property values include:

• setPropertyVTQ— Sets a property’s value using a VTQ (value, time, and
quality) structure.

○ name— The name of the property.
○ value— The VTQ (value, time, and quality) for the property’s value.
○ forceChange— Set this value to true to force the value to be sent to the

ThingWorx platform even if it has not changed. This option is a good
option for sending the first value or sending a value immediately after
reconnect.

• setPropertyValue— Sets the value of a property, using a Primitive
type.

44 Edge C SDK Developer’s Guide

○ name— The name of the property.
○ value— The Primitive type for the value.

• setProperty— Sets a property’s value from an object.

○ name— The name of the property.
○ value— The value to set. The value will be cast to the type of property

if possible; otherwise an exception will be thrown.

Setting Up the Subscribed Properties Manager
The subscribed properties have a separate manager, called Subscribed Properties
Manager (defined in the source file, ./subscribedProps/
twSubscribedProps.h). . To set up the use of the Subscribed Properties
Manager, the twConfig.h files should have the following members:

• #subscribed_props_enabled— Controls whether the Subscribed
Property Manager will persist offline property updates.

• #subscribed_props_queue_size— Limits the maximum size of the
Subscribed Properties bin that stores the offline property updates.

• #subscribed_props_dir— Specifies the path to the directory for
subscribed properties.

As of v.1.3.0 of the C SDK, these properties can be set independently during
initialization. You can copy them from the twConfig structure in the
twDefaultConfig.h file to your twConfig.h file and set the values
according to the requirements of your application. Previously these properties
were stored in the tw_api struct and were derived from the offline message
store settings. For this reason, the default values shown in the
twDefaultConfig.h file still point to the default values in the offline
message store.

Note
The Subscribed Properties Manager is initialized automatically when you call
twAPI_initialize(). You do not need to initialize it separately.

Setting Subscribed Properties
For efficient throughput, the functions twApi_
SetSubscribedPropertyVTQ and twApi_
PushSubscribedProperties are essential. For even better throughput,
consider using the asynchronous version of the call, twApi_
PushSubscribedPropertiesAsync.

Steps for Setting Up Applications 45

After setting properties individually using twApi_
SetSubscribedPropertyVTQ, you can alternatively use the Subscribed
Properties Manager (SPM) to push the subscribed properties all at once to
ThingWorx platform (twSubscribedPropsMgr_
PushSubscribedProperties).
See the table below for more information about these functions.

Subscribed Properties Functions

Function Description
twApi_
SetSubscribedPropertyVTQ

This function sets a specified
subscribed property for a specified
thing, including the name of the
property, its value, timestamp, and
quality. Note that this call is blocked
while the twApi_
PushSubscribedProperties is
being called.

twApi_
PushSubscribedProperties

This function pushes subscribed
properties for a specified thing to
ThingWorx platform. When this
function is being called, it blocks the
function twApi_
SetSubscribedPropertyVTQ.
This function does not return until the
data is sent to ThingWorx platform and
a response is received (or times out).

46 Edge C SDK Developer’s Guide

Subscribed Properties Functions (continued)
Function Description
twSubscribedPropsMgr_
PushSubscribedProperties()

This function sends (“pushes”)
subscribed properties to ThingWorx
platform. When this function is called,
the calling thread is blocked. This call
also blocks other threads from invoking
twApi_
PushSubscribedProperties at
the same time. If you need better
throughput, use the asynchronous
twApi_
PushSubscribedPropertiesA
sync instead.

twApi_
PushSubscribedPropertiesA
sync(char * entityName, char
forceConnect,PushSubscri
bedPropertiesAsyncCallback
cb, void* userdata)

This function sends (“pushes”)
subscribed properties to ThingWorx
platform asynchronously. The calling
thread does not block nor does it bock
other threads.
The userdata is used as a correlation
Id and will be passed into the callback.
You can use the callback to handle the
asynchronous results from this call.
When this function is called, the calling
thread is not blocked nor does this call
block other threads from making the
same call..
If twApi_
PushSubscribedPropertiesA
sync results in multiple
UpdateSubscribedProperty
Values calls (due to message size),
then the callback will be invoked
multiple times. In all cases, the final
callback invocation will be indicated by
a char parameter on the callback
function.

Steps for Setting Up Applications 47

Defining Events
Event definitions describe interrupts that ThingWorx platform users can subscribe
to if they want to be notified when something happens.
Events require that a data shape for event data be defined in code. Events can be
defined in code or by using the following attributes:

• ThingWorxEventDefinition — Defines the event.
• name — Name of the event.
• description — A description for the event.
• dataShape — The name of the data shape for the event data.
Events must be registered. Refer to Register Events on page 60 for details. The
registered event is reported back to the server when it is browsing. Note that
Events do not have callbacks since they cannot be invoked from ThingWorx
platform to the Edge. You can add aspects to an Event that is already registered,
using twApi_AddAspectToService.

Define Property Callback Functions
The property callback function is registered to be called when a request for a
specific property is received from ThingWorx platform; for example, if a service
or a mashup references a property.
typedef enum msgCodeEnum (*property_cb)
(const char * entityName, const char* propertyName,
twInfoTable** value, char isWrite, void * userdata)

The following parameters are passed to this function:
• entityName— the name of the entity this request is for
• propertyName— the name of the property the request is for
• twInfoTable ** value— a pointer to an twInfoTable that will

contain the new property value if this is a write or will be populated with the
current property value if this is a read. (For information on InfoTables, see the
section, twInfoTable on page 89.)

• isWrite— a Boolean indicator saying whether this is a read or a write
• userdata— any user data value that was passed in when the callback was

registered.
The return value of the function should be a message code enumeration as defined
in src/api/twDefinitions.h. These message codes reflect the overall
success or failure of your read or write operation locally. For more information
about the return values, refer to the appendix, Callback Function Return Codes on
page 133.

48 Edge C SDK Developer’s Guide

Pushing Property Changes from ThingWorx to Edge Devices.
When properly bound to a remote property on an Edge device, properties on
ThingWorx RemoteThing instances can be used for both reading values from
and writing new values to the device. For C SDK implementations, use the
function, twApi_RegisterPropertyCallback(), to register properties
for which you expect ThingWorx platform to push down values. Then use the
property handler callbacks to update the property values received from
ThingWorx platform.
When a new value is set for a remote property on a RemoteThing instance, the
value is sent down to the edge drive. For Remote Properties configured with a
Cache Option of Read from Server Cache, ThingWorx platform
continues to show the old value of the property until the edge device confirms the
new value by sending it back in a property update. This behavior gives the device
the ability to decide if the new value is valid before updating the value in
ThingWorx platform.

Tip
To ensure that a property displays an accurate value at all times, you can set the
Cache Option to Fetch from Remote on Every Read. This setting
increases the amount of data sent between ThingWorx platform and the edge
device because every request for the property retrieves the data directly from the
device. Use this option sparingly with devices on metered connection.

Example
/*****************
Property Handler Callbacks
******************/
enum msgCodeEnum propertyHandler(const char * entityName,
const char * propertyName, twInfoTable ** value,
char isWrite, void * userdata) {
TW_LOG(TW_TRACE,"propertyHandler - Function called for Entity %

s,
Property %s", entityName, propertyName);

if (value) {
if (isWrite && *value) {

/* Property Writes */
if (strcmp(propertyName, "InletValve") == 0)

twInfoTable_GetBoolean(*value, propertyName, 0,
&properties.InletValve);

else if (strcmp(propertyName, "FaultStatus") == 0)
twInfoTable_GetBoolean(*value, propertyName, 0,
&properties.FaultStatus);

else if (strcmp(propertyName, "TemperatureLimit") == 0)

Steps for Setting Up Applications 49

twInfoTable_GetNumber(*value, propertyName,
0, &properties.TemperatureLimit);

else return NOT_FOUND;
return SUCCESS;

} else {
/* Property Reads */
if (strcmp(propertyName, "InletValve") == 0)

*value = twInfoTable_CreateFromBoolean(propertyName,
properties.InletValve);

else if (strcmp(propertyName, "Temperature") == 0)
*value = twInfoTable_CreateFromNumber(propertyName,

properties.Temperature);
else if (strcmp(propertyName, "TemperatureLimit") == 0)

*value = twInfoTable_CreateFromNumber(propertyName,
properties.TemperatureLimit);

else if (strcmp(propertyName, "Location") == 0)
*value = twInfoTable_CreateFromLocation(propertyName,

&properties.Location);
else if (strcmp(propertyName, "BigGiantString") == 0)

*value = twInfoTable_CreateFromString(propertyName,
properties.BigGiantString, TRUE);

else return NOT_FOUND;
}
return SUCCESS;

} else {
TW_LOG(TW_ERROR,"propertyHandler - NULL pointer for value");
return BAD_REQUEST;
}

}

Define Service Callback Functions
The service callback function is registered to be called when a request for a
specific service is received from ThingWorx platform.
typedef enum msgCodeEnum (*service_cb)
(const char * entityName, const char * serviceName,
twInfoTable * params,twInfoTable** content, void * userdata)

The following parameters are passed to this callback function:
• entityName— the name of the entity this request is for (Thing, Resource,

for example). Guaranteed to not be NULL.
• serviceName— the name of the service being requested
• twInfoTable *params— a pointer to an twInfoTable that contains

all the parameters for the service. May be NULL if service has no parameters.
(For information on InfoTables, see the section, twInfoTable on page 89)

50 Edge C SDK Developer’s Guide

• twInfoTable ** content— a pointer to a pointer to a twInfoTable.
content is guaranteed to not be NULL. *content is not.

Note
A new instance of a twInfoTable should be created on the heap and a
pointer to it returned.

• userdata— any user data value that was passed in when the callback was
registered.

The return value of the function is TWX_SUCCESS if the request completes
successfully or an appropriate error code if not (should be a message code
enumeration as defined in twDefinitions.h).

Example
Here is an example of handling a single service in a callback:
/*****************
Service Callbacks
******************/
/* Example of handling a single service in a callback */
enum msgCodeEnum addNumbersService(const char * entityName,
const char * serviceName, twInfoTable * params,
twInfoTable ** content, void * userdata) {

double a, b, res;
TW_LOG(TW_TRACE,"addNumbersService - Function called");
if (!params || !content) {

TW_LOG(TW_ERROR,"addNumbersService -
NULL params or content pointer");

return BAD_REQUEST;
}

twInfoTable_GetNumber(params, "a", 0, &a);
twInfoTable_GetNumber(params, "b", 0, &b);
res = a + b;
*content = twInfoTable_CreateFromNumber("result", res);
if (*content) return SUCCESS;
else return INTERNAL_SERVER_ERROR;

}

Steps for Setting Up Applications 51

Create Your Tasks (Optional)
If using the built-in tasker to drive data collection or other types of repetitive or
periodic activities, create a function for the task. Task functions are registered with
the Tasker and then called at the rate specified after they are registered. The
Tasker is a very simple, cooperative multitasker, so these functions should not take
long to return and most certainly must not go into an infinite loop.
The signature for a task function is found in src/utils/twTasker.h. The
function is passed a DATETIME value with the current time and a void pointer
that is passed into the Tasker when the task is registered.
Here is an example of a data collection task:
/***************
Data Collection Task
****************/
/*
This function is called at the rate defined in the task creation.

The SDK has a simple cooperative multitasker, so the function
cannot infinitely loop.
Use of a task like this is optional and not required in a
multithreaded
environment where this functionality could be provided in a
separate thread.
*/
#define DATA_COLLECTION_RATE_MSEC 2000
void dataCollectionTask(DATETIME now, void * params) {
/* TW_LOG(TW_TRACE,"dataCollectionTask: Executing"); */

properties.TotalFlow = rand()/(RAND_MAX/10.0);
properties.Pressure = 18 + rand()/(RAND_MAX/5.0);
properties.Location.latitude = properties.Location.latitude

+

((double)(rand() - RAND_MAX))/RAND_MAX/5;
properties.Location.longitude = properties.Location.

longitude +

((double)(rand() - RAND_MAX))/RAND_MAX/5;
properties.Temperature = 400 + rand()/(RAND_MAX/40);
/* Check for a fault. Only do something if we haven't

already */
if (properties.Temperature > properties.TemperatureLimit

&&

properties.FaultStatus ==
FALSE) {

twInfoTable * faultData = 0;
char msg[140];
properties.FaultStatus = TRUE;
properties.InletValve = TRUE;

52 Edge C SDK Developer’s Guide

sprintf(msg,"%s Temperature %2f exceeds threshold
of %2f",

thingName, properties.Temperature,

properties.TemperatureLimit);
faultData = twInfoTable_CreateFromString("msg",

msg, TRUE);
twApi_FireEvent(TW_THING, thingName,

"SteamSensorFault", faultData, -1,
TRUE);

twInfoTable_Delete(faultData);
}
/* Update the properties on the server */
sendPropertyUpdate();

}

Creating a Bind Event Handler (Optional)
You may want to track exactly when your edge entities are successfully bound to
or unbound from ThingWorx platform. The reason for this is that only bound
items should be interacting with ThingWorx platform and it will never forward a
request to a corresponding remote thing in its database when the request is
targeted at an entity that is not bound.
/* Register a bind event handler */
/* Callbacks only when thingName is bound/unbound */

twApi_RegisterBindEventCallback(thingName, BindEventHandler,
NULL);

/* First NULL says "tell me about all things that are bound */

/* twApi_RegisterBindEventCallback(NULL, BindEventHandler, NULL

Create a File Transfer Event Handler
(Optional)
If you are using the File Transfer capability of the C SDK, you may want to create
an event handler for any file transfer events. This handler will be called whenever
a new file is successfully sent from the server to your application, and when an
asynchronous file transfer from your device to the service has completed either
successfully or unsuccessfully.
The signature for a file transfer event callback is as follows:
typedef void (*file_cb) (char fileRcvd, twFileTransferInfo *
info);

The input parameters for this callback function are as follows:

Steps for Setting Up Applications 53

• fileRcvd— a Boolean. TRUE is the file was received, FALSE if it was
being sent

• info— a pointer to the file transfer info structure. The called function retains
ownership of this pointer and must delete it with twFileTransferInfo_
Delete() when it has finished using it

Return:
• None
The structure definition of twFileTransferInfo can be found in the file
src/fileTransfer/twFileManager.h.

Create a Tunnel Event Handler (Optional)
If you are using the Tunneling capability of the C SDK, you may want to create an
event handler for any tunneling events. This handler will be called whenever a
new tunnel is established or when a tunnel closes. The twTunnelManager also
provides functions to list active tunnels as well as to force a shutdown of an active
tunnel.
The signature for a tunnel event callback is as follows:
typedef void (*tunnel_cb) (char started, const char * tid,
const char * thingName,

const char * peerName,
const char * host, int16_t port, DATETIME startTime,

DATETIME endTime, uint64_t bytesSent, uint64_t bytesRcvd,

const char * type, const char * msg, void * userdata);

The Input parameters for this callback function are as follows:
• started— Boolean. TRUE is the tunnel is started, FALSE if tunnel has

ended.
• tid— the unique id of the tunnel
• thingName— the name of the thing this tunnel is targeted at
• peerName— the name of the peer user of the tunnel
• host— the hostname of the local connection that is tunneled to
• port— the port number of the local connection that is tunneled to
• startTime— the time the tunnel started (0 if it never started)
• endTime— the time the tunnel ended (0 if it hasn't ended yet)
• bytesSent— the total number of bytes that were sent to the peer
• bytesRcvd— the total number of bytes that were received from the peer
• type— the type of the tunnel (tcp, udp, or serial)
• userdata— an opaque pointer that was passed in during registration

54 Edge C SDK Developer’s Guide

Return:
• None
The definition of the twTunnelManager singleton’s functions can be found in
the file src/tunneling/twTunnelManager.h.

Implementing a Synchronized State
Handler
As of version 1.4.0, the C SDK provides the ability to install handlers that notify
you when getPropertySubscriptions() is being called on ThingWorx
platform in response to a notifyPropertyUpdates message. This
mechanism works in a similar manner to the bind event handler.

Tip
Consider the Synchronized State event handler as a best practice for edge
applications.

Steps for Setting Up Applications 55

4
Running the C SDK

Initializing the API Singleton ...57
Registering Properties and Services ...59
Registering Events ..60
Binding Your Entities..60
Initializing the File Manager (Optional) ..61
Initializing the Tunnel Manager (Optional)..62
Creating a Bind Event Handler (Optional) ..65
Using the Utilities of the C SDK ..65
Connecting to the Server and Initiating Defined Tasks ..68
Running the C SDK on Windows-based Operating Systems ...70

After developing the callback handler functions, it is now time to do something
with them. Continue here to learn what you should typically do in your ‘main’
function (or in a function called by main).
See the following topics:

• Initializing the API Singleton on page 57
• Registering Properties and Services on page 59
• Registering Events on page 60
• Binding Your Entities on page 60
• Initializing the File Manager (Optional) on page 61
• Initializing the Tunnel Manager (Optional) on page 62
• Using the Utilities of the C SDK on page 65

○ Using Linked Lists, Maps, and Dictionaries on page 67
• Connecting to the Server and Initiating Defined Tasks on page 68
• Running the C SDK on Windows-based Operating Systems on page 70

56 Edge C SDK Developer’s Guide

Initializing the API Singleton
Initializing the API singleton configures the connection to the server, but does
NOT establish the connection. Typically, only the host and the application key
need to be modified, all other defaults can be used. For security purposes, the API
defaults to rejecting self-signed certificates. If you choose to override this
behavior, you can tell the API to allow them.
To initialize the API, use the twAPI_initialize function. Here is an example from
the Steam Sensor example application (main.c file):
/* Initialize the API */
err = twApi_Initialize(hostname, port, TW_URI, appKeyCallback, NULL, MESSAGE_
CHUNK_SIZE,
MESSAGE_CHUNK_SIZE, TRUE);
if (TW_OK != err) {
TW_LOG(TW_ERROR, "Error initializing the API");
exit(err);
}

In this example, notice that this function no longer takes an application key
variable. Instead, starting with v.2.2.0 of the C SDK, it uses the output of the
appKeyCallback function. This callback function is called whenever the C SDK
requires the current application key to authenticate with the ThingWorx platform.
Here is its signature:
void appKeyCallback(char* appKeyBuffer,unsigned int maxLength);

where appKeyBuffer is an allocated buffer in which to copy the application
key, and maxLength is the size of the buffer. Do not copy an Application Key
that is longer than this buffer size into appKeyBuffer. This callback usage
applies to all C SDK functions that require an Application Key as input.

Caution
In production, this callback should obtain an Application Key from a secure
source.

The signature for the twApi_Initialize() function and definitions of its parameters
can be found in the file, twApi.h.

Note
The twApi_Initialize() function initializes the Subscribed Properties Manager.
You do not need to initialize this manager separately.

Version 2.0.0 of the C SDK added an init callback that is fired when the SDK is
initialized by twApi_Initialize. The registration function twApi_
RegisterInitCallback for this callback allows you to provide a void* 'user data'

Running the C SDK 57

pointer, which is cached in a data structure owned by twcfg. This type of user data
pointer is useful for integrating C with C++ because it allows a C++ static
member function to invoke a private member via the C++ this pointer.

Simpler Initialization (C SDK v.2.0.0 and later)
Version 2.0.0 of the ThingWorx Edge C SDK has introduced initialization
functions that simplify startup, namely twExt_Start() and twExt_Idle().
Located in the /src/threadUtils/twThreadUtils.c file in the C SDK
installation, these functions provide simple thread management for C SDK
functionality. Both functions can be called to establish the minimum number of
support threads and services to manage an AlwaysOn connection to ThingWorx
platform. The main difference between them is that twExt_Idle() will not
return until your application is terminated. Any thread used to call this function
will not exit. twExt_Idle() is useful in situations where your application only
wants to start up services and then idle until it is exited. Call this function if you
want this thread to take control of polling any registered polled functions.
twExt_Start() assumes that you are starting up AlwaysOn services as part of
your application’s normal startup process and need the calling thread to return
once. The return is done to continue with operations that you may need to perform
as part of your startup process. This function starts a thread to monitor all things
with registered polled functions. Use this function if you want control of the
calling thread to perfom other work inside your application. This function relies
on the tasker to call polled functions on a thread that it creates. Here is the
function signture from src/threadUtils/twThreadUtils.h:
void twExt_Start(uint32_t dataCollectionRate, enum twThreadingModel

threadingModel,

uint32_t messageHandlerThreadCount);

where:
• intervalMsec is the polling period in milliseconds.
• threadingModel is the threading model that you want to use.
• messageHandlerThreadCount is the number of message handling

threads to spawn.
The signature of the twExt_Idle() function from twThreadUtils.h:
void twExt_Idle(uint32_t intervalMsec, enum twThreadingModel
threadingModel, uint32_t messageHandlerThreadCount);

where:
• intervalMsec is the polling period in milliseconds.
• messageHandlerThreadCount is the number of message handling

threads to spawn.

58 Edge C SDK Developer’s Guide

• twThreadingModel specifies which threading model you want to use:
○ TW_THREADING_SINGLE—Use the thread on which this function is

called to service registered polled functions.
○ TW_THREADING_TASKER—Use the built-in tasker functionality of the

C SDK to call all polled functions.
Both the twExt_Start() and twExt_Stop() functions set up periodic calls
to any polled functions that you declare and that will be bound to specific Thing
Shapes or Thing Templates. Often referred to as “Process Scan Request”
functions, periodic polled functions can be declared against any Edge Thing Shape
or Edge Thing Template, using the functions, twExt_
RegisterPolledTemplateFunction() and twExt_
RegisterPolledShapeFunction(). These periodic polled functions can
be used to generate simulated data or to poll hardware for new data in your Thing
or Shape. For details about these functions, see threadUtils.c and
threadUtils.h in the src/threadUtils subdirectory of your C SDK
installation.
The twExt_Stop() function shuts down all threads associated with your
current threading model. Call twExt_Stop() before calling twApi_
Disconnect(). Here is the signature of the twExt_Stop() function from
twThreadUtils.h:
int twExt_Stop()

For details about each of these functions, see the twThreadUtils.h and
twTrheadUtils.c files in the C SDK installation directory, ../src/
threadUtils.

Registering Properties and Services
Registering properties and services with the API accomplishes two things:

1. Tells the API what callback function to invoke when a request for that
property or service comes in from ThingWorx platform.

2. Gives the API information about the property or service so that when
ThingWorx browses the Edge device, it can be informed about the availability
and the definition of that property or service.

To register services and properties, follow these examples:
/* Register our services */
ds = twDataShape_Create(twDataShapeEntry_Create("a",NULL,TW_NUMBER));
twDataShape_AddEntry(ds, twDataShapeEntry_Create("b",NULL,TW_NUMBER));
twApi_RegisterService(TW_THING, thingName,
"AddNumbers", NULL, ds, TW_NUMBER, NULL, addNumbersService, NULL);

/* Register our properties */
twApi_RegisterProperty(TW_THING, thingName,

Running the C SDK 59

"InletValve", TW_BOOLEAN, NULL, "ALWAYS", 0, propertyHandler, NULL);
twApi_RegisterProperty(TW_THING, thingName,
"Pressure", TW_NUMBER, NULL, "ALWAYS", 0, propertyHandler, NULL);
twApi_RegisterProperty(TW_THING, thingName,
"BigGiantString", TW_STRING, NULL, "ALWAYS", 0, propertyHandler, NULL);

For more information about using the callbacks, refer to the section, Server-
Initiated Interactions on page 92.

Registering Events
Events do not have callbacks because they cannot be invoked from ThingWorx
platform as a request to the edge device running your application. For your
application to report events back to ThingWorx platform, use the twApi_
RegisterEvent function to register the events. For more information about the
function, refer to the Doxygen documentation that accompanies the C SDK.

Binding Your Entities
For an edge device to communicate with ThingWorx platform, its application
must bind with the server, effectively establishing the connection with the
RemoteThing that represents the edge device on ThingWorx platform. Bind each
entity (Thing) so that when the API connects (and reconnects) to the server, it will
announce that your entity is connected and available for interaction. The API
supports unbinding entities so transient “Things” are supported.
To bind an entity, use its thingName, as shown here:
/* Bind our thing */
twApi_BindThing(thingName);

Caution
The ThingWorx Edge .NET SDK uses the function, twApi_
BindThingWithoutDefaultServices, internally. Do NOT use this
function for C SDK development. It will not register handlers for GetMetadata
or NotifyPropertyUpdate. As a result, it will not properly bind things to
ThingWorx platform.

Bulk Binding
To bind multiple entities at the same time, use the API that enables bulk binding,
twApi_BindThings(twList * entityNames). With this function, you
provide a list of remote things when you want to bind multiple remote devices
using a single call. To avoid any attempt to send a message larger than the

60 Edge C SDK Developer’s Guide

configured maximum message size, the SDK checks the size of the message and
generates an error when the maximum message size is reached. Once it detects the
error, it sends the current message and starts a new one.

Initializing the File Manager (Optional)
If using the directory browsing and file transfer capability of the SDK, perform
the following steps:

1. Set the staging directory — You must set the staging directory before
initializing the FileManager. The default directory of the FileManager is most
likely owned by root and will require a change to either the location of the
staging directory and the ownership of the staging directory, or running the
application as a user with the correct permissions. For example:
/* Staging Directory Variable */
/* must be set before initializing file manager*/
twcfg.file_xfer_staging_dir=”/home/user/stagingdir”;

2. Initialize the FileManager singleton. For example:
/* Initialize the FileTransfer Manager */
twFileManager_Create();

3. Define any virtual directories — Virtual directories allow you to expose only a
subset of the entire file system of the device to the server for browsing and file
transfer. This restriction is for both performance and security reasons. For
example:
/* Create our virtual directories */
twFileManager_AddVirtualDir(thingName, "tw", "/opt/thingworx");
twFileManager_AddVirtualDir(thingName, "tw2", "/twFile_tmp");

Registering a virtual directory with the FileManager consists of mapping a
unique name to an absolute path of a directory in your file system. Note that
all subdirectories of the specified directory in the file system will be exposed
to the server. Multiple virtual directories can be defined and there is no
requirement that they be contiguous.

4. Register the FileCallback function that was previously defined so that the
FileManager will call that function when any file transfer events occur. You
can provide a wildcard filter so that only file transfer events of files that match
the filter call the callback function. In addition, callbacks can be set up as
“one-shots” such that the callback is unregistered automatically after it is
invoked the first time. For example:
/* Register the file transfer callback function */
twFileManager_RegisterFileCallback(fileCallbackFunc, NULL,
FALSE, NULL);

Running the C SDK 61

5. OPTIONAL: By default, WebSocket compression will be used for all
WebSocket communications, including file transfers. If you need to disable
compression, call the tw_Api_DisableWebSocketCompression()
function. Note that this function does not return anything. In general,
compression can be disabled after the API is initialized by calling the function:
twApi_DisableWebSocketCompression ();

When you disable compression, compression will not be used for any WebSocket
communications, including file transfers.

Note
The C SDK v.2.1.2 provides improved logging for staging directory failures. If a
file transfer fails to complete when the staging directory is on a separate partition
(RAMDisk) from the final destination, use a DEBUG build of our application to
see the logging around this failure (in twListEntities()).

Initializing the Tunnel Manager (Optional)
If using the tunneling capability of the C SDK you must create #define
ENABLE_TUNNELING. A tunnel manager singleton is automatically created for
you when you initialize the API. If you wish to disable tunneling for any reason
you may call twTunnelManager_Delete(). The tunnel manager may be
started up again by calling twTunnelManager_Create(). Once the tunnel
manager is running you may register any callback functions. Passing a NULL for
the id parameter when registering a callback will result in callbacks for all tunnel
events.
/* Register the tunnel callback function */
twTunnelManager_RegisterTunnelCallback(tunnelCallbackFunc, NULL,
NULL);

When new tunnels are requested by the server, the tunnel manager creates a new
tunnel. These tunnels establish an independent websocket back to the server. By
default these websockets connect back to the same host/port that the API’s
websocket uses as well as the same TLS certificate validation criteria. You can
override these defaults by using the built-in tunnel manager functions as found in
the file, twTunnelManager.h:
int twTunnelManager_UpdateTunnelServerInfo(char * host,

uint16_t port, appKeyCallback);
void twTunnelManager_SetProxyInfo(char * proxyHost, uint16_t proxyPort,

char * proxyUser, twPasswdCallbackFunction proxyPassCallback);
void twTunnelManager_SetSelfSignedOk(char state);
void twTunnelManager_EnableFipsMode(char state);
void twTunnelManager_DisableCertValidation(char state);
void twTunnelManager_DisableEncryption(char state);
void twTunnelManager_SetX509Fields(char * subject_cn, char * subject_o,

62 Edge C SDK Developer’s Guide

char * subject_ou, char * issuer_cn,
char * issuer_o, char * issuer_ou);

void twTunnelManager_LoadCACert(const char *file, int type);
void twTunnelManager_LoadClientCert(char *file);
void twTunnelManager_SetClientKey(const char *file, char * passphrase,
int type);

Notice that output of two callback functions is used by the TunnelManager for
security:
• The twTunnelManager_UpdateTunnelServerInfo() function uses the output

of the appKeyCallback() function, which is represented as
appKeyCallback.

• The twTunnelManager_setProxyInfo() function uses the output of the
twPasswdCallbackFunction, which is represented here by
proxyPassCallback.

This change is present in v.2.2.0 and later versions of the C SDK. For details
about the appKeyCallback function, see the explanation below the first example
code listing in "Initializing the API Singleton" on page . The password callback is
explained in the section, Passwords (C SDK 2.2.0 and later) on page 64.

Is the Built-in Tasker Function Used?
If you are using the built-in tasker, continue to the next section. However, if you
are not using the built-in tasker, you must call the function
twTunnelManager_TaskerFunction on a very frequent basis (the
examples default to 5 ms). The setting to use here is highly dependent on use case
and environment. Before using this function, read the section, .twTunnelManager_
TaskerFunction and Tick Resolution on page 63.

Connection Information for the Tunnel Manager
By default the twTunnelManager uses the same twConnectionInfo
structure as twApi so that all twConnectionInfo settings should be shared
by twApi and twTunnelManager. However, if twTunnelManager_
EnableFipsMode is called, a new twConnectionInfo structure is
allocated for the twTunnelManager, assigned the current values of the
twConnectionInfo structure of twApi, and then updated by this function.
Therefore, after this function is called, any ::twConnectionInfo settings
applied to the ::twApi are not reflected in the ::twTunnelManager's
connection structure.

twTunnelManager_TaskerFunction and Tick Resolution
Tunnel performance can be greatly affected by the thread’s tick_resolution
of the twTunnelManager_TaskerFunction. When the tunnel manager
thread is being created, the tick resolution determines how fast a tunnel manager
checks the status of its managed tunnels. The smaller this value, the faster the
tunnel responds. Tick resolution is especially important when running multiple

Running the C SDK 63

tunnels concurrently, but be aware that a smaller tick resolution consumes more
CPU resources. For an example, see the example application called
“SteamSensorWithThreads.” See also Running the C SDK on Windows-based
Operating Systems on page 70

Tunneling and Proxy Servers
When using a proxy server, you must set both the initial proxy with twApi_
SetProxyInfo AND the proxy for tunneling with twTunnelManager_
SetProxyInfo. Otherwise, the tunneling will fail. To set up the initial proxy,
see Proxy Server Authentication on page 76.
Use the following function to set up communication through a proxy server for
tunneling:
twTunnelManager_SetProxyInfo(char * proxyHost, uint16_t proxyPort,

char * proxyUser, twPasswdCallbackFunction proxyPassCallback);

The following table lists and describes the parameters you can specify:
Parameter Description
proxyHost The IP address or host name of the proxy server to use for

tunneling. .
proxyPort The number of the port on the proxy server to use.
proxyUser If the proxy server requires Basic or Digest authentication, you

need to use the callback function, twPassword
passwdCallback For a password, you must provide a password callback function so

the ThingWorx SDK can obtain a copy of the tunnel password from
your application.

See the next section for more information about passwords.

Passwords (C SDK 2.2.0 and later)
As of v.2.2.0 of the C SDK, password protection is your responsibility. For the C
SDK to use a password, you need to develop a way for the password to be
provided to the following callback function:
typedef void (*twPasswdCallbackFunction)(char * passwdBuffer,
unsigned int maxPasswdSize);

As a result, the twTunnelManager_SetProxyInfo function no longer takes
password variable. Instead, starting with v.2.2.0 of the C SDK, it uses the output
of twPasswdCallbackFunction. This callback function is called whenever the C
SDK requires the current password for a proxy server user or a digest to
authenticate with the ThingWorx platform.

64 Edge C SDK Developer’s Guide

Caution
In production, this callback should obtain a password or digest from a secure
source.

Tunnel Manager and OpenSSL
When the tunnel manager is initialized, it points its {{tm->info}} struct at
{{tw_api->connectionInfo}}, so that any API settings are realized in the
tunnel manager. However, if you call any functions that set tunnel manager
settings (such as {{twTunnelManager_DisableCertValidation()}}
or {{twTunnelManager_EnableFipsMode()}}), then the C SDK will
actually create a new struct to set the tunnel manager specific settings and any
subsequent calls to set API connection information (like loading a cert) will no
longer be realized in the tunnel manager. See also the API documentation for the
C SDK.

Creating a Bind Event Handler (Optional)
You may want to track exactly when your edge entities are successfully bound to
or unbound from ThingWorx platform. The reason for this is that only bound
items should be interacting with ThingWorx platform and it will never forward a
request to a corresponding remote thing in its database when the request is
targeted at an entity that is not bound.
/* Register a bind event handler */
/* Callbacks only when thingName is bound/unbound */

twApi_RegisterBindEventCallback(thingName, BindEventHandler,
NULL);

/* First NULL says "tell me about all things that are bound */

/* twApi_RegisterBindEventCallback(NULL, BindEventHandler, NULL

Using the Utilities of the C SDK
The /src/utils subdirectory of the C SDK provides several utilities that you
may find useful in your applications:

• Utilities that support proxy servers:

○ HTTP Proxy— This utility allows you to open a socket and connect to
ThingWorx platform through the HTTP proxy server specified in the
twSocket structure. The functions provided support establishing,
authenticating, and otherwise managing connections through an HTTP

Running the C SDK 65

proxy server. The files that define and implement the functions are
twHttpProxy.h and twHttpProxy.c.

○ twNTLM— This utility enables you to establish a connection to
ThingWorx platform through an NTLM proxy server. The files that define
and implement the functions are twNtlm.h and twNtlm.c.

• Utilities that enable you to use lists, maps (hashmaps), and dictionaries:

○ list— This utility provides functions for creating a linked list, adding
entries to the list, updating values of entries in the list, removing entries
from the list, iterating over entries in a list, and deleting lists. The linked
lists that the ForEach function can iterate over include maps and
dictionaries. Note that twList is dynamically sized, thread-safe, untyped,
and doubly linked. See also Using Linked Lists on page 67

○ twMap— twMap is a pointer to an internally maintained data structure.
The twMap.h file defines the prototypes for the functions that enable you
to create a hashmap, add elements to a hashmap, retrieve an element from
a hashmap, remove elements from a hashmap, delete a hashmap, search a
map for an element and value, replace a value of an element, retrieve the
number of elements in a map, and iterate over the elements in a hashmap,
using the twMap_Foreach function. See Maps on page 67.

○ twDict— This is an abstraction that lets the C SDK decide if a list is
implemented as a map or a list. This utility mightbe useful on systems with
low memory. See Dictionaries on page 68.

• Utility that supports logging:

○ twLogger— The twLogger.h file defines the structures and
prototypes for the functions that support the logging functionality of the C
SDK, including the log level enumeration and the ability to turn on
verbose logging for purposes of debugging. The twLogger.c file
provides the functions that support logging with the C SDK.

• Utilities that provide encryption and string manipulation:

○ crypto_wrapper— This utility is a wrapper around the libtomcrypt
DES encryption functions. The functions support DES encryption/
decryption, MD4 Message-Digest algorithm, and creation of a DES key.

○ twString— The string utilities enable an application to modify
characters (strings), including changing the case (upper to lower and lower
to upper) and copying a string. The

66 Edge C SDK Developer’s Guide

Using Linked Lists, Maps, and Dictionaries
The twList functions provide a set of utility features that you can use to perform
the following tasks:
• Create / delete a linked list.
• Add a new entry to an existing linked list.
• Remove an existing entry from a linked list.
• Clear all entries from a linked list.
• Iterate over the entries in a linked list.
The twList.h file defines functions that support these activities. What is
important to note is that when you want to iterate over a list, you should now use
the twList_ForEach() function instead of twList_Next(), which is
deprecated as of release 1.3.3 of the C SDK. The twList_ForEach() function
provides a way to iterate over a specified list quickly and in a thread-safe manner.
Further, it allows you to iterate over different kinds of structures, namely lists,
maps, and dictionaries. It first determines whether the list passed in is a list or
not and checks if list->count == 0. If these conditions are true, it exits. If it
is a list, it locks the list, defines a node as the first entry in the list, and then
iterates over the list, using the listHandler.
For more details about these functions, see the source files and/or the generated
documentation that accompanies the C SDK. The generated documentation is
located in the /documentation subdirectory of the C SDK installation.

Maps
The twMap.h and twMap.c files provide functions and mock list interfaces to
perform the following tasks on a hashmap:
• Create a hashmap.
• Add a new element to a hashmap.
• Retrieve an existing element from a hashmap.
• Search for an element in a hashmap.
• Remove an existing element from a hashmap.
• Remove all elements from a hashmap.
• Free the memory associated with a hashmap.
• Delete a hashmap.
• Determine the current size of a hashmap.
• Iterate over the elements in a map.
• Replace the value of an element in a map.
For more details about these functions, see the source files and/or the generated
documentation that accompanies the C SDK. The generated documentation is
located in the /documentation subdirectory of the C SDK installation.

Running the C SDK 67

Dictionaries
The twDict is an abstraction that lets you treat lists and maps the same way. A
twDict can be implemented with either a map or a list. Lists use less memory
and are faster at inserting new items. Lists are slow for finding an item. Maps are
slower to insert new items, but are much faster at finding items. Maps do use more
memory. By providing the twDict abstraction, you can decide if you want a low
memory implementation (list) to run in a smaller memory footprint or a higher
performing implementation that will require more memory. This can be set at
compile time with twDictionaryMode tw_dictionary_mode=TW_
DICTIONARY_MODE, in twDict.c before compiling.

Note
This has not been tested in any mode other than TW_DICTIONARY_MODE as of
version 1.4.0 of the C SDK.

For more information about twDict, see the source files and/or the generated
documentation that accompanies the C SDK. The generated documentation is
located in the /doc subdirectory of the C SDK installation.

Example
Here is a snippet that creates a dictionary called list_Foreach, containing
three items. It uses the twMap_forEach to iterate over the dictionary.
list_Foreach = twDict_Create(NULL, NULL);
twDict_Add(list_Foreach,(void*)"A");
twDict_Add(list_Foreach,(void*)"B");
twDict_Add(list_Foreach,(void*)"C");
twDict_Foreach(list_Foreach, twDict_ForEach_ForEachHandler, (void *)
userData);}

Tip
It is recommended to use twDict instead of tw_List. Further, twList_
Next() is deprecated; instead use the new Foreach iterator to process entries
in a list or dictionary. The Foreach iterator significantly improves performance.

Connecting to the Server and Initiating
Defined Tasks
Connecting to the server first and then initiating tasks is the preferable order,
especially if your tasks are pushing data to the server. If you start the tasks earlier,
they may attempt to send property updates or invoke services on the server before

68 Edge C SDK Developer’s Guide

the connection is established. While reversing the order does not cause any lasting
problems, it tends to keep the system very busy with retries before the connection
is established.
The connection to the server is attempted and retried with the parameters specified
to the twApi_Connect() function. By default, the API automatically reconnects
using the same parameters if the connection is subsequently lost. This behavior
can be overridden when the API is initialized by setting the autoreconnect
parameter to FALSE.

Note
The default setting for DEFAULT_SOCKET_READ_TIMEOUT in
twDefaultSettings.h is 500 ms. If a websocket read times out in the
middle of reading a record, the SSL state is lost. As a result, the SDK tries to start
read the record header again, and the operation fails. To detect this situation,
check the log for the SDK for the error, twTlsClient_Read: Timed out
after X milliseconds, and consider increasing the value of the DEFAULT_
SOCKET_READ_TIMEOUT. You can change the setting at runtime by
modifying the value of twcfg.socket_read_timeout.

The API also supports callback notifications when a connection is successfully
made and when a connection is lost. The signature for “event callback” functions
can be found in the file, src/messaging/twMessaging.h, and the task
registration functions are found in the file, twApi.h.
/* Connect to server */
if (!twApi_Connect(CONNECT_TIMEOUT, twcfg.connect_retries)) {
/* Register our "Data collection Task" with the tasker */
twApi_CreateTask(DATA_COLLECTION_RATE_MSEC, dataCollectionTask);
}

Performance Tip - Socket Read Timeout
If you are experiencing slow performance during high traffic C SDK operations, it
could be beneficial to decrease the twcfg.socket_read_timeout. This
change will allow more blocked threads to access the receive socket to look for
the message that they are expecting. While smaller values will lead to increased
performance, it is important to keep in mind that the smaller the value of
twcfg.socket_read_timeout, the higher the CPU usage. This increased
CPU usage should be monitored, especially on power constrained (battery
operated, for example) devices.

Running the C SDK 69

Running the C SDK on Windows-based
Operating Systems
When running the C SDK on Windows-based operating systems, it is possible for
the Windows OS to have a tick resolution that is higher that the tick resolutions
requested by the C SDK. For example, the default Windows tick resolution is
15ms and the recommended API task tick resolution is 5ms. In this scenario the
API thread executes only at the limit interval of 15ms instead of the requested 5ms
interval. To achieve the best performance, it is recommended that the Windows
tick resolution be changed, using the Windows API functions, to one half of the
maximum sampling rate (Nyquist Sampling). Note that some systems will
experience high CPU load due to the increased tick timer.

70 Edge C SDK Developer’s Guide

5
Setting Up Security

Using SSL/TLS for Security..72
Setting Up Secure Connections..73
Proxy Server Authentication ...76
FIPS Mode ...78
Support for Cipher Suites ...79
Debugging with GDB and OpenSSL on ARM Platforms..80
Troubleshooting Connection Errors (C SDK v.1.4.0 and earlier)81

71

Using SSL/TLS for Security
OpenSSL provides a more secure and more-frequently updated library for
securing your Edge applications than the Open Source axTLS library, which was
previously provided with the ThingWorx Edge C SDK. As of v. 2.2.1 the
ThingWorx C SDK distribution bundles include only the OpenSSL libraries and
not the axTLS library. In addition, as of release 2.2.1, the non-FIPS distribution
bundles include the OpenSSL 32– and 64–bit libraries, version 1.0.2q, which, on
Windows platforms are based on the Visual Studio 2015 runtime library. The FIPS
distribution bundles include the OpenSSL libraries v.1.0.2l, which are based on
the Visual Studio 2012 runtime library.
The C SDK prints not only its version number but also the SSL/TLS library and
version number being used. If FIPS is enabled, it includes that information as
well.

Tip
For best security practices, use OpenSSL, which is provided in the distribution
bundle.

The C SDK supports Apache Tomcat default ciphers up to and including Tomcat
8.0.33. Subsequent versions of Tomcat may exclude ciphers that are used in older
versions of OpenSSL and therefore will prevent the ThingWorx C SDK from
connecting to the server in question (a ThingWorx platform).
If you prefer to use your own security implementation, note that the C SDK
provides wrapper functions that closely follow the OpenSSL API to make it easy
to use in your applications. If you want to use another SSL/TLS implementation,
you need to set up the C SDK to use your implementation by following the
template provided in the file, twTemplateSSL.h, located in the subdirectory,
/src/tls, of the C SDK installation. This file contains a template for an SSL/
TLS wrapper layer for your SSL/TLS implementation.

Tip
The OpenSSL library supports client authentication for an application that you are
developing with the C SDK.

Use of OpenSSL is the default setting when generating the make or project files
using CMake. If you are using your own security implementation, it is possible to
turn OpenSSL off and your implementation on. Here is an example of enabling a
custom implementation and disabling OpenSSL:
cmake /path/to/tw-c-sdk -DUSE_CUSTOMSECURITY=ON -DUSE_OPENSSL=OFF

72 Edge C SDK Developer’s Guide

vwilliams
Highlight

Caution
Using an insecure connection is strongly discouraged, especially in a production
environment.

The first argument for cmake is always the path to the source directory.

Setting Up Secure Connections
By default the C SDK is set up to ensure the most secure connection possible,
using the OpenSSL 1.0.2q library as the default library in the non-FIPS
distribution bundles of the SDK and OpenSSL 1.0.2l in the FIPS versions of the
SDK.

Note
Starting with release 2.2.1 of the C SDK, the non-FIPS distribution bundles
provide version 1.0.2q of the OpenSSL 32– and 64–bit libraries, which on
Windows platforms are based on the Visual Studio 2015 runtime library. The
FIPS distribution bundles of this SDK provide the 32–bit OpenSSL libraries,
v.1.0.2l, which are based on the Visual Studio 2012 runtime library.

For the most secure connection, set the issuer and subject fields of your
server certificates before starting the connection by using the twApi_
SetX509Fields() function. These settings mean that it will attempt to
validate certificates and reject self-signed certificates.
Several functions are available to modify the default behavior and may provide
some level of convenience during development, such as allowing self-signed
certificates. These functions can be found in the file, twApi.h, and are as
follows:
int twApi_SetProxyInfo(char * proxyHost, uint16_t proxyPort,

char * proxyUser, twPasswdCallbackFunction proxyPassCallback);
void twApi_SetSelfSignedOk();
int twApi_EnableFipsMode();
void twApi_DisableCertValidation();
void twApi_DisableEncryption();
int twApi_SetX509Fields(char * subject_cn,
char * subject_o, char * subject_ou,

char * issuer_cn,
char * issuer_o, char * issuer_ou);

int twApi_LoadCACert(const char *file, int type);
int twApi_LoadClientCert(char *file);
int twApi_SetClientKey(const char *file, twPasswdCallbackFunction
passphraseCallback, int type);

Setting Up Security 73

vwilliams
Highlight

In the twApi_SetProxyInfo() function, note that this function no longer takes a
variable for the proxy password. Instead, it uses the output of the
twPasswdCallbackFunction(). For details, see Passwords (C SDK 2.2.0 and
later) on page 64.
In the twApi_SetClientKey() function, note that this function no longer takes a
variable for the passphrase. Instead it uses the output of the
twPasswdCallbackFunction(). For details, see Passwords (C SDK 2.2.0 and
later) on page 64.

Note
Although you may want to enable self-signed certificates for development
purposes, make sure that you disable self-signed certificates and set up the proper
certificates before putting your application into production. Modifying the most
secure settings possible for production is NOT recommended.

The functions defined in twTLS.h can be used for any SSL/TLS connections that
your application needs to make. These functions are the abstracted interface that
sit on top of the underlying TLS implementation.
Consistent with the OpenSSL APIs, the C SDK uses a structure for an SSL/TLS
context that manages all the SSL/TLS sessions, as well as a structure for an SSL/
TLS session itself. In addition, the APIs expose several functions for operations.
The definitions and functions are exposed with preprocessor definitions. For these
details, refer to the Doxygen documentation provided with the SDK. The
following table lists and briefly describes the structures and functions defined in
twTLS.h.
Item Description
TW_SSL_CTX The SSL context structure as defined by the implementation.
TW_SSL The SSL session structure as defined by the implementation.
TW_SSL_SESSION_ID_SIZE The SSL session structure as defined by the implementation.
TW_SSL_SESSION_ID_SIZE The size of an SSL session ID as defined by the implementation. This

ID is used for session resumption.
TW_GET_CERT_SIZE Returns the maximum number of certificates allowed by the

implementation.
TW_GET_CA_CERT_SIZE Returns the maximum number of CA certificates allowed by the

implementation.
TW_NEW_SSL_CTX Creates and initializes new instance of an SSL_CTX.
TW_NEW_SSL_
CLIENT(a,b,c,d)

Creates and initializes a new instance of an SSL structure within the
provided SSL_CTX.

Parameters:
• a— pointer to a TW_SSL_CTX structure.

74 Edge C SDK Developer’s Guide

Item Description
• b— a TW_SOCKET_TYPE value that is the descriptor of the

socket to be used. The underlying socket should not be opened
before calling this function.

• c— session id. The session ID if session resumption is being used.
The SDK does not use session resumption and sets this to NULL.

• d— size of the session ID that was passed in.
TW_HANDSHAKE_SUCCEEDED Returns a Boolean (char) value, TRUE if the SSL handshake

succeeded and data can be securely exchanged, FALSE if otherwise.
TW_SSL_FREE(a) Close any socket and free up any memory associated with an SSL

session.

Parameter:
• a— pointer to the TW_SSL structure to free.

TW_SSL_CTX_FREE(a) Free up any memory associated with an SSL context.

Parameter:
• a— pointer to the TW_SSL_CTX structure to free.

TW_SSL_WRITE(a,b,c) Writes data out the secure connection.

Parameters:
• a— pointer to the TW_SSL structure to write to.

• b— pointer to the buffer containing the data to write.

• c— the amount of data to write.

This result of this macro should contain the number of bytes sent, or a
negative number if an error occurred.

TW_SSL_READ(a, b, c, d) Reads data from the secure connection.

Parameters:
• a— pointer to the TW_SSL structure to read from.

• b— pointer to the buffer that the data should be placed in.

• c— the amount of data to read.

• d— the number of milliseconds to wait while trying to read the
desired amount of data.

This result of this macro should contain the number of bytes read, or a
negative number if an error occurred.

TW_USE_CERT_FILE(a,b,c) Loads an X509 certificate in PEM or DER format from the file
specified.
Parameters:
• a— pointer to the TW_SSL_CTX structure load the certificate

into.
• b— name of the file containing the certificate.
• c— a password to access the certificate (if required).

TW_USE_KEY_
FILE(a,b,c,d)

Loads an encrypted key in PEM or DER format from the file specified.
Parameters:
• a— pointer to the TW_SSL_CTX structure to read from

Setting Up Security 75

Item Description
• b— name of the file containing the key
• c— the type of key
• d— a password to access the key.

TW_USE_CERT_CHAIN_
FILE(a,b,c)

Loads a certificate chain in PEM or DER format from the file specified.
Parameters:
• a— pointer to the TW_SSL_CTX structure load the certificate

into.
• b— name of the file containing the certificate chain.
• c— a password to access the certificate (if required).

TW_SET_CLIENT_CA_
LIST(a,b)

Sets the list of supported CAs from the file specified.
Parameters:
• a — pointer to the TW_SSL_CTX structure load the certificate into.
• b — pointer to the CA list.

TW_VALIDATE_CERT(TW_SSL
* ssl, char selfSignedOk)

Inline function that validates the received certificate.

Parameters:
• ssl— pointer to the TW_SSL structure that has received the

certificate

• selfSignedOk— boolean, set to TRUE if self-signed
certificates are allowed, FALSE if not. Default is FALSE.

Returns zero if the certificate is valid, non-zero if not.
TW_ENABLE_FIPS_MODE(a) Enables FIPS mode.

Parameters:
• a – pointer to the TW_SSL_CTX structure

Returns zero if successful or an error code if FIPS is supported but
enabling failed or TW_FIPS_MODE_NOT_SUPPORTED if the TLS
layer does not support FIPS

TW_GET_X509_FIELD(TW_
SSL * ssl, char field)

Inline function that gets the value of a field in the certificate.

Parameters:
• ssl— pointer to the TW_SSL structure that has received the

certificate

• field – char, the field to retrieve. Fields supported must be
SUBJECT_CN, SUBJECT_O, SUBJECT_OU, ISSUER CN,
ISSUER_O, ISSUER_OU

Returns the value of the field, or NULL if the field is not found.

Proxy Server Authentication
The C SDK supports the following authentication options for communicating with
ThingWorx platform through a proxy server:
• No authentication

76 Edge C SDK Developer’s Guide

• Basic authentication
• Digest authentication
• NTLM
As of v.2.2.0, the C SDK uses a callback function to retrieve a basic password or a
digest when it needs to authenticate with a proxy server. The twPasswords.h
file provides the signatures for this callback function:

typedef void (*twPasswdCallbackFunction)(char * passwdBuffer,
unsigned int maxPasswdSize);

where passwdBuffer allocates a buffer in which to copy the password or
digest and maxPasswdSize is the size of the buffer. Do not copy a password or
digest that is longer than maxPasswdSize into passwdBuffer.

Caution
In production, this callback should obtain a password or digest from a secure
source.

Use the following function to set up communication through a proxy server:
int twApi_SetProxyInfo(char * proxyHost, uint16_t proxyPort,

char * proxyUser, char * passwdCallback);

The following table lists and briefly describes the parameters you can specify:
Parameter Description
proxyHost The IP address or host name of the proxy server to use when connecting to the

ThingWorx platform.
proxyPort The number of the port on the proxy server to use.
proxyUser If the proxy server requires Basic or Digest authentication, provide a user

nameto present to the proxy server on connection. These credentials are only
for the proxy server. They are not passed beyond the proxy server.

passwdCallback For a password, you must use the twPasswordCallbackFunction to obtain an
encrypted password from a source of your choosing and store the encrypted
password in passwdCallback. For example, your application might request
the credentials in a user interface or command line interface.

The C SDK retrieves and uses the password when it must access the proxy
server. It then zeroes out the passwdCallback and discards it from
memory. See also Passwords (C SDK 2.2.0 and later) on page 64.

Tunneling with Proxy Servers
When using a proxy server, you must set both the initial proxy as shown above
using twApi_SetProxyInfo AND the proxy for tunneling with
twTunnelManager_SetProxyInfo. If you set only the initial proxy and not

Setting Up Security 77

the tunneling proxy, the connection succeeds but the tunneling fails. See
Tunneling with Proxy Servers on page 64 for more information about setting up
the proxy server for tunneling.

FIPS Mode
Your application can use an embedded FIPS-140-2-validated cryptographic
module (Certificate #1747; OpenSSL FIPS module version 2.0.2) running on all
supported platforms per FIPS 140-2 Implementation Guidance section G.5
guidelines. The C SDK with FIPS requires the OpenSSL toolkit to be used in
conjunction with the OpenSSL FIPS Object Module 2.0.2. Do not attempt to use
any libraries other than the OpenSSL library provided with the C SDK. The
current version of OpenSSL in the FIPS distribution bundle is 1.0.2l.

Note
Not all hardware platforms where applications written using the C SDK can
support FIPS-140-2-validated cryptography. For example, on platforms based on
IA32 architecture, the processor must support the SSE2 instruction set. The SSE2
instruction set is available in Intel x86 CPUs, starting with Pentium 4. The
application log will have a message that FIPS-140-2-validated cryptography is
enabled. If you enable it, be sure that your certificates include only FIPS approved
encryption algorithms. The FIPS approved algorithms are AES, Triple-DES, RSA,
DSA, DH, SHA1, and SHA2.

If the FIPS module is enabled and the application directly communicates with a
Java-based SSL/TLS server (such as ThingWorx platform), the cipher suite list
should include !kEDH (as shown below). Otherwise, ephemeral Diffie-Hellman
(EDH) key exchange may fail:
<CipherSuites>DEFAULT:!kEDH</CipherSuites>

In addition, depending on the Java version, the Apache Tomcat server used by
your ThingWorx platform may or may not be FIPS compliant:
• Java 7 — By default, the strong encryption ciphers necessary for the FIPS

mode edge client to connect are NOT enabled. To enable them, you must add
the following line to the Apache Tomcat server.xml configuration file’s
<Connector> tag:
ciphers="TLS_RSA_WITH_AES_128_CBC_SHA256,

TLS_RSA_WITH_AES_128_CBC_SHA,

TLS_RSA_WITH_AES_256_CBC_SHA256,

TLS_RSA_WITH_AES_256_CBC_SHA,SSL_RSA_WITH_RC4_128_SHA"

78 Edge C SDK Developer’s Guide

vwilliams
Highlight

• Java 8 — By default, the strong encryption ciphers necessary for the FIPS
mode edge client to connect ARE enabled. You do not need to modify the
Apache Tomcat file.

By default in both Java 7 and Java 8, weak encryption ciphers are enabled. To
disable weak encryption ciphers for running in FIPS mode, update the following
two lines in the Java configuration file, java.security:
jdk.certpath.disabledAlgorithms=MD2, DSA, RSA keySize < 2048
jdk.tls.disabledAlgorithms=MD5, SHA1, DSA, RSA keySize < 2048

With weak encryption ciphers disabled, the FIPS mode edge client will connect to
the server, but the non-FIPSmode edge client will NOT connect to the server.
For information about building your edge client with FIPS mode, see the section
on building with FIPS mode enabled in the topic, How to Build with FIPS Mode
Enabled on page 107.

Support for Cipher Suites
The C SDK supports the default cipher suites of Apache Tomcat up to and
including Tomcat 8.0.33. Subsequent versions of Tomcat may exclude ciphers that
are used by earlier versions of OpenSSL and therefore could prevent the C SDK
from connecting to the server in question (a ThingWorx platform).
With OpenSSL, you can choose from 110 ciphers. For more information about the
supported cipher suites, visit https://www.openssl.org/docs/man1.0.2/apps/ciphers.
html.

Note
As of release 2.2.1 of the C SDK, axTLS is no longer provided in the distribution
bundle. For best security practices, use OpenSSL. In addition, as of release 2.2.1,
the version of OpenSSL in the non-FIPS 32– and 64–bit distribution bundles of
the C SDK is 1.0.2q. The version of OpenSSL in the FIPS distribution bundle is
1.0.2l.

Custom Cipher Suites
As of v.2.1.2 of the C SDK, you can customize what cipher suites are used at run
time through a C SDK parameter. Called cipher_set, this parameter has been
added to the twcfg data structure of the C SDK. This parameter allows you to
specify a string that contains your cipher suite configuration. This parameter is
supported only for builds that are based on OpenSSL. When specifying a string,
use the OpenSSL cipher list configuration format, which you can find at http://
openssl.cs.utah.edu/docs/apps/ciphers.html#cipher_list_format.

Setting Up Security 79

https://www.openssl.org/docs/man1.0.2/apps/ciphers.html
https://www.openssl.org/docs/man1.0.2/apps/ciphers.html
http://openssl.cs.utah.edu/docs/apps/ciphers.html#cipher_list_format
http://openssl.cs.utah.edu/docs/apps/ciphers.html#cipher_list_format
vwilliams
Highlight

If you do not specify any cipher suites, secure defaults are used. The default string
is set in twOpenSSL.h as follows:
#define TW_SSL_DEFAULT_CIPHER_STRING

ALL:!aNULL:!eNULL:!LOW:!3DES:!MD5:!EXP:!PSK:!DSS:!RC4:!SEED:!ADH:!IDEA:!3

DES:!SRP:!SSLv3

If FIPS mode is enabled, any configuration that you may have entered is ignored.
Instead, the following configuration string is used:
TLSv1.2+FIPS:kRSA+FIPS:!eNULL:!aNULL

The file, twNoTls.h, sets the cipher suite to null because the functionality is
not supported in the build.

Note
You will see a warning if the C SDK detects a different OpenSSL version being
used at run time than the version with which the application was built.

A Note About Cipher Suites
If your application communicates with an instance of the ThingWorx platform that
uses Java 1.7, the cipher suite list should include !kEDH (as shown below) to
disable Ephemeral Diffie-Hellman ciphers. Otherwise, Ephemeral Diffie-Hellman
(EDH) key exchange will fail, and your device application will be unable to
connect to the ThingWorx platform.

<CipherSuites>DEFAULT:!kEDH</CipherSuites>

Debugging with GDB and OpenSSL on
ARM Platforms
When debugging the C SDK with OpenSSL on ARM platforms, it is possible to
receive a SIGILL with the default debugging configuration. Here is an example of
the SIGILL message from GDB:

Program received signal SIGILL, Illegal instruction.
0x400864c0 in ?? () from /usr/lib/arm-linux-gnueabihf/libcrypto.
so.1.0.0

Continuing the execution should be enough to continue debugging. However, it is
possible to write a custom handler in GDB that will automatically handle this
during the debug process. Please refer to the official OpenSSL documentation for
more information: https://www.openssl.org/docs/faq.html#PROG15 (entry #16).

80 Edge C SDK Developer’s Guide

https://www.openssl.org/docs/faq.html#PROG15

Troubleshooting Connection Errors (C
SDK v.1.4.0 and earlier)
If your Edge application uses an earlier version of the C SDK than 1.4.0 and it
cannot establish a secure (SSL/TLS) websocket Connection using the C SDK, you
may see one of the following errors:

• Error initializing SSL connection

• twWs_Connect: Error restarting socket. Error 0.

These errors are known to occur after the version of Tomcat used for ThingWorx
platform has been upgraded to 8.0.35 or higher and versions of the C SDK earlier
than 1.4.0 are in use in the application. The later versions of Tomcat have disabled
RSA-based ciphers by default due to forward secrecy concerns. The ciphers
supported by the axTLS libraries earlier than v.2.1.2.1 (the version in the C SDK
1.4.0) are disabled by default by this change to Tomcat. When a C SDK device
tries to connect, an error “No compatible ciphers” is returned.
It is strongly recommended that you upgrade to the latest version of the C SDK
and use the OpenSSL library provided in the distribution bundle. You then will
need to rebuild your application. As of release 2.2.1, the axTLS libraries are no
longer provided in the distribution bundle.

Setting Up Security 81

6
Using Edge Extensions

ThingWorx Edge SDK Extensions for the C SDK ...83
Creating a Directory of Registered Shapes and Templates ...83
Loading Shape Libraries ..83
Tasks for EdgeThingShape and EdgeThingTemplate Constructors................................83
Macros for the Edge Extensions ...83
Services ...83
Events ..83
Best Practices for Developing Edge Extensions...83
Examples of Using Edge Extensions with the C SDK..83

82 Edge C SDK Developer’s Guide

ThingWorx Edge SDK Extensions for the
C SDK

Creating a Directory of Registered
Shapes and Templates

Loading Shape Libraries

Tasks for EdgeThingShape and
EdgeThingTemplate Constructors

Macros for the Edge Extensions

Macros That Take Actions

Macros to Create twPrimitives from C Primitives

Macros to Create Data Shapes and Single Columns

Macros to Create InfoTables for Data Shapes

Declaring Edge Things

Defining Aspects for Properties

Services

Events

Best Practices for Developing Edge
Extensions

Examples of Using Edge Extensions with
the C SDK

Simple Thing Extension

Warehouse Shape Library

Using Edge Extensions 83

7
Advanced Use of Edge Extensions

Modifying Property Values at Runtime...85
Applying EdgeThingShapes at Runtime ..85
Inter-Shape Communication...85
Calling ThingWorx Platform Functions ..85
Polling Updates for EdgeThingShapes..85

84 Edge C SDK Developer’s Guide

Modifying Property Values at Runtime

Property Change Listeners

Applying EdgeThingShapes at Runtime

Inter-Shape Communication

Calling ThingWorx Platform Functions

Polling Updates for EdgeThingShapes

Advanced Use of Edge Extensions 85

8
Interacting with ThingWorx

Basic Data Structures ..87
Server-Initiated Interaction ...92
SDK Application-Initiated Interaction ...96

86 Edge C SDK Developer’s Guide

Basic Data Structures
Once your connection is alive and active, any requests made to the server for
registered properties and services will automatically be forwarded to your
application, and the appropriate callback function will be called. To push
properties to the server, execute a service on another entity in the system, or
trigger an event on the server. Helper functions are available for these actions.
These functions are described in the section, SDK Application-Initiated
Interaction on page 96.
Data in the C SDK are represented in the form of a twPrimitive structure.
Collections of data values are represented in the form of a twInfoTable
structure. Each of these structures is defined below and the API functions to
access them are found in src/messaging/twBaseTypes.h and
twInfoTable.h, respectively.

twPrimitive Structure
The twPrimitive structure is a form of a variant that can represent any of the
base types supported in ThingWorx platform. The structure is defined in src/
messaging/twBaseTypes.h as follows:
typedef struct twPrimitive {
enum BaseType type;
enum BaseType typeFamily;
uint32_t length;
union {

int32_t integer;
double number;
DATETIME datetime;
twLocation location;
char boolean;
struct {

char * data;
uint32_t len;

} bytes;
struct twInfoTable * infotable;
struct twPrimitive * variant;

} val;
} twPrimitive;

The key fields are the type enumeration and the val union. The fields
typeFamily and length are for internal API use and are typically not used by
an application.
There are many helper functions for creating twPrimitive structures from base
types in the ThingWorx C SDK, so that you will rarely have to create one
manually. These function definitions can be found in src/messaging/
twBaseTypes.h.

Interacting with ThingWorx 87

ThingWorx Base Types
The supported base types consist of the following:

Base Types

Base Type Description
TW_NOTHING An empty val.
TW_STRING A modified UTF8 encoded string. Data and length

are stored in val.bytes and val.len,
respectively. The twPrimitive owns the data
pointer and will free it when deleted. TW_STRING
types are null terminated.

TW_NUMBER A C double value, stored in val.double.
TW_BOOLEAN Represented as a single char, stored in

val.boolean.
TW_DATETIME A DATETIME value, which is an unsigned 64 bit

value representing milliseconds since the epoch 1/1/
1970. Data is stored in val.datetime.

TW_INFOTABLE A pointer to a complex structure (defined in the next
section) and stored in val.infotable. The
twPrimitive owns this pointer and will free up
the memory pointed to when the twPrimitive is
deleted.

TW_LOCATION A structure consisting of three double floating point
values – longitude, latitude, and elevation. Stored as
val.location.

TW_BLOB A pointer to a character array. Data and length are
stored in val.bytes and val.len, respectively.
Differs from TW_STRING in that the array may
contain nulls. The twPrimitive owns the data
pointer and will free it when deleted.

TW_IMAGE Identical to TW_BLOB except for the type difference.
TW_INTEGER Assigned 4 by integral value. Stored as

val.integer.

88 Edge C SDK Developer’s Guide

Base Types (continued)

Base Type Description
TW_VARIANT Pointer to a structure that contain a type enum and

a twPrimitive value. The pointer is stored as
val.variant. The twPrimitive owns the
pointer and will free the structure when deleted.

TW_XML,TW_JSON, TW_QUERY, TW_
HYPERLINK, TW_IMAGELINK, TW_
PASSWORD, TW_HTML, TW_TEXT, TW_TAGS,
TW_GUID,TW_THINGNAME, TW_
THINGSHAPENAME, TW_
THINGTEMPLATENAME, TW_DATASHAPENAME,
TW_MASHUPNAME, TW_MENUNAME, TW_
BASETYPENAME, TW_USERNAME, TW_
GROUPNAME, TW_CATEGORYNAME, TW_
STATEDEFINITIONNAME, TW_
STYLEDEFINITIONNAME, TW_
MODELTAGVOCABULARYNAME, TW_
DATATAGVOCABULARYNAME, TW_
NETWORKNAME, TW_MEDIAENTITYNAME, TW_
APPLICATIONKEYNAME, TW_
LOCALIZATIONTABLENAME, TW_
ORGANIZATIONNAME

These base types are all of the TW_STRING family
and are stored similarly.

twInfoTable
The twInfoTable is a non-ordered collection, composed of columns and rows.
Infotables serve as the primary mechanism for sending data to and from
ThingWorx platform. Data that is sent to ThingWorx platform using an infotable is
NOT guaranteed to be in any particular order. That said, the data shape used to
specify an infotable supports an ordinal that can be used to display values in a
specific order, but not through the C SDK. Note that infotable properties store
field values by key, not by index. The properties should be referenced by key and
not by index.

Structure of an InfoTable
A twInfoTable is essentially a self-describing collection of twPrimitive
values. The structure of a twInfoTable follows:
typedef struct twInfoTable {
twDataShape * ds;
twList * rows;
uint32_t length;
TW_MUTEX mtx;

} twInfoTable;

The ds element is a pointer to a twDatashape structure that describes what
each field (column) of the table is – its name, description, and the base type of that
field. The base type of a field can be any one of the base types described in
ThingWorx Base Types on page 88, including a twInfoTable, as the SDK and
ThingWorx platform allow nesting of these tables.

Interacting with ThingWorx 89

The rows element is a pointer to a list of values. Each entry in the list is a pointer
to a twInfoTableRow structure. The twInfoTableRow structure contains
values for each of the fields described in the data shape and must contain the
values in the same order as in the data shape. The number of rows in an
twInfoTable is a 32-bit value and therefore only practically limited to how
much memory you wish to allow the twInfoTable to consume.
The length and mtx elements of the twInfoTable structure are for internal
use and are typically not accessed directly. All the pointer elements of an infotable
are owned and managed by the twInfoTable and should not be deleted or freed
on their own.

Creating a twInfoTable
Creating anInfoTable is a three step process, as follows:

1. Create your data shape and add any necessary entries (fields) to the data shape.
twDataShapeEntry * twDataShapeEntry_Create(const char * name,

const char description, enum BaseType type);

twDataShape * twDataShape_Create(twDataShapeEntry * firstEntry);

int twDataShape_AddEntry(struct twDataShape * ds,
struct twDataShapeEntry * entry);

Caution
You must create a data shape to hold the schema for the twInfoTable
BEFORE creating the table. Once the table is created, data is added one row at
a time. When a row is created, data must be added to the row in the same order
that it is in data shape. If the data is not added in the correct order, the table
does not form correctly. There is no warning about this, and it becomes
evident only when a user attempts to view the data in ThingWorx Composer or
a mashup that the data is being added incorrectly.

2. Create the twInfoTable, which requires its data shape to be passed in as a
parameter.
twInfoTable * twInfoTable_Create(twDataShape * shape)

3. Add data to the twInfoTable by individually creating the rows and adding
them to the it.
twInfoTableRow * twInfoTableRow_Create(twPrimitive * firstEntry)
int twInfoTableRow_AddEntry(twInfoTableRow * row, twPrimitive * entry)
int twInfoTable_AddRow(twInfoTable * it, twInfoTableRow * row)

90 Edge C SDK Developer’s Guide

Adding Ordinal to the Data Shape in the C SDK
If you want to display the data in an infotable in a particular order, you can add
the ordinal aspect to the data shape, as follows:

1. Create the data shape entry, using twDataShapeEntry_
Create(<name>,<descr>,<BaseType>);.

2. Create a twPrimitive to hold the ordinal value, using twPrimitive_
CreateFromInteger(<ordinal>);.

3. Add the ordinal aspect, using twDataShapeEntry_
AddAspect(<DataShapeEntry
pointer>,"Ordinal",<twPrimitive pointer>);.

4. Create the data shape, using twDatashape_Create(), or add to an
existing data shape, using twDataShape_AddEntry(), passing the
DataShapeEntry pointer created above.

Helper Functions for InfoTables
One very common pattern is a twInfoTable that contains a single field and a
single row, for example the current value of a single property. The API provides
several helper functions that make it easy to create these simple tables, using just a
single function call.
twInfoTable * twInfoTable_CreateFromString(const char * name,

char * value, char duplicate);
twInfoTable * twInfoTable_CreateFromNumber(const char * name,

double value);
twInfoTable * twInfoTable_CreateFromInteger(const char * name,

int32_t value);
twInfoTable * twInfoTable_CreateFromLocation(const char * name,

twLocation * value);
twInfoTable * twInfoTable_CreateFromDatetime(const char * name,

DATETIME value);
twInfoTable * twInfoTable_CreateFromBoolean(const char * name,

char value);
twInfoTable * twInfoTable_CreateFromPrimitive(const char * name,

twPrimitive * value);
twInfoTable * twInfoTable_CreateFromBlob(const char * name,

char * value, int32_t length, char isImage, char duplicate);

Accessing data contained in a twInfoTable is also easy with several helper
functions defined to assist with the common usage patterns. You simply pass in
the name of the field and which row you wish to retrieve the value from.
int twInfoTable_GetString(twInfoTable * it, const char * name,

int32_t row, char ** value);
int twInfoTable_GetNumber(twInfoTable * it, const char * name,

int32_t row, double * value);
int twInfoTable_GetInteger(twInfoTable * it, const char * name,

int32_t row,int32_t * value);
int twInfoTable_GetLocation(twInfoTable * it, const char * name,

int32_t row, twLocation * value);
int twInfoTable_GetBlob(twInfoTable * it, const char * name,

Interacting with ThingWorx 91

int32_t row, char ** value, int32_t * length);
int twInfoTable_GetDatetime(twInfoTable * it, const char * name,

int32_t row, DATETIME * value);
int twInfoTable_GetBoolean(twInfoTable * it, const char * name,

int32_t row, char * value);
int twInfoTable_GetPrimitive(twInfoTable * it, const char * name,

int32_t row, twPrimitive ** value);

Server-Initiated Interaction
To respond to requests for properties and services from the server, the API
provides the property access and service access callbacks. The next two sections
describe these callbacks, their parameters, and return values, and provide
examples of using these callbacks.

Property Access Callbacks
Property access callbacks are the functions that are called when a request comes
from the server to either read or write a specific property. These functions have the
following signature:
enum msgCodeEnum myPropCallback (

const char * entityName,
const char * propertyName,
twInfoTable ** value,
char isWrite,
void * userdata

)

The following table lists and describes the parameters:

Parameter Type Description
entityName Input Pointer to a character array. The name is

represented as a modified UTF-8 string
with the name of the entity targeted in this
request. This parameter is guaranteed not to
be null.

propertyName Input Pointer to a character array. This is the
name of the property, represented in
modified UTF-8. This value may be null or
‘*” which means the request is to return the
value of all properties registered for this
entity.

value Input/Output Pointer to a pointer to a twInfoTable. If
this is a request to read the value of a
property a new twInfoTable structure
should be created and it pointer should

92 Edge C SDK Developer’s Guide

Parameter Type Description
assigned to value. If this is a write, the
value will contain a pointer to the infotable
that contains the data to be written. This
pointer is guaranteed to be non-NULL. In
either case, the calling function will assume
ownership of the pointer in *value, so the
callback function does not need to worry
about memory management of any
infotables passed in or created and returned
as values.

isWrite Input A Boolean value describing whether this is
a read (FALSE) or write (TRUE) request
for the property.

userdata Input The same pointer value that was passed in
when this property was registered. This
pointer can be used for anything. A typical
use is to specify the this pointer when
using C++ class wrappers.

The return value of the callback is an indicator of the success or failure of the
function. You are free to choose any of the return codes defined in the
msgCodeEnum enumeration type, defined in src/api/twDefinitions.h,
starting with SUCCESS or any applicable larger value.
Below is a simple example of a property handler callback function.
enum msgCodeEnum propertyHandler(const char * entityName,

const char * propertyName,
twInfoTable ** value,
char isWrite,

void * userdata) {
char * asterisk = “*”;

if (!propertyName) propertyName = asterisk;
TW_LOG(TW_TRACE,"propertyHandler - Function called for Entity %

s,
Property %s", entityName, propertyName);

if (value) {
if (isWrite && *value) {

/* Property Writes */
if (strcmp(propertyName,

"TemperatureLimit") == 0) {
twInfoTable_GetNumber(*value, propertyName, 0,

&properties.TemperatureLimit);
} else return NOT_FOUND;
return SUCCESS;

} else {
/* Property Reads */

Interacting with ThingWorx 93

if (strcmp(propertyName,
"TemperatureLimit") == 0)

{*value = twInfoTable_CreateFromNumber
(propertyName,

properties.TemperatureLimit);
} else return NOT_FOUND;

}
return SUCCESS;

} else {
TW_LOG(TW_ERROR,"propertyHandler - NULL pointer

for value");
return BAD_REQUEST;

}
}

Service Callbacks
Service callbacks are the functions that are called when a request comes from
ThingWorx platform to execute a service on a particular entity. These functions
have the following signature:
typedef enum msgCodeEnum (*service_cb) (

const char * entityName,
const char * serviceName,
twInfoTable * params,
twInfoTable ** content);

The following table defines the parameters:

Parameters for msgCodeEnum()

Parameter Type Description
entityName Input Pointer to a character array. The name is

represented as a modified UTF-8 string
with the name of the entity targeted in this
request. This parameter is guaranteed not to
be NULL.

serviceName Input Pointer to a character array. This is the
name of the service to be executed,
represented in modified UTF-8. This
parameter is guaranteed not to be NULL.

params Input Pointer to a twInfoTable. This is a
pointer to an infotable that contains all of
the parameters specified for this invocation
of the service. This pointer may be NULL
if the service in question has no input
parameters. The API owns this pointer and

94 Edge C SDK Developer’s Guide

Parameters for msgCodeEnum() (continued)
Parameter Type Description

will manage any memory associated with
it.

content Output Pointer to a pointer to a twInfoTable. This
is used to return any data the service
returns back to the server. The callback
function should create a twInfoTable as
described previously and pass a pointer to
that structure to *content. If the service
does not return any data it is OK to set
*content to NULL. The API will assume
ownership of the pointer in *value, so the
callback function does not need to worry
about memory management of any
infotables passed in or created and returned
as values.

userdata Input The same pointer value that was passed in
when this property was registered. This
pointer can be used for anything, a typical
use is to specify the ‘this’ pointer when
using C++ class wrappers.

The return value of the callback is an indicator of the success or failure of the
service call. You are free to choose any of the return codes defined in the
msgCodeEnum enumeration type, defined in src/api/twDefinitions.h,
starting with SUCCESS or any applicable larger value. Here is an example of a
service handler callback:
enum msgCodeEnum addNumbersService(const char * entityName,

const char * serviceName,
twInfoTable * params,

twInfoTable ** content,
void * userdata) {

double a, b, res;
TW_LOG(TW_TRACE,"addNumbersService - Function called");
if (!params || !content) {

TW_LOG(TW_ERROR,"addNumbersService - NULL params or content
pointer");

return BAD_REQUEST;
}
if (twInfoTable_GetNumber(params, "a", 0, &a) ||

twInfoTable_GetNumber(params, "b", 0, &b)) {
TW_LOG(TW_ERROR,"addNumbersService – Missing parameter

data");
return BAD_REQUEST;

Interacting with ThingWorx 95

}
res = a + b;
*content = twInfoTable_CreateFromNumber("result", res);
if (*content) return SUCCESS;
else return INTERNAL_SERVER_ERROR;

}

SDK Application-Initiated Interaction
The SDK provides functions to make it easy for an application to initiate
interaction with ThingWorx platform. Assuming all the proper visibility,
permissions, and other security aspects are correct, an entity built using the C
SDK can read or write properties, create a list of subscribed properties, set values
of subscribed properties, invoke services, and trigger events on itself or other
entities in the system. The following sections describe the helper functions

Read a Property
This helper function retrieves the current value of a property of a specific entity on
ThingWorx platform.
enum msgCodeEnum twApi_ReadProperty(enum entityTypeEnum
entityType,

char * entityName, char *
propertyName,

twPrimitive ** result, int32_t
timeout,

char forceConnect)

The following table lists and describes the parameters for this helper function:

Parameter Type Description
entityType Input The type of entity that the property belongs

to. Enumeration values can be found in
twDefinitions.h

entityName Input The name of the entity that the property
belongs to.

propertyName Input The name of the property to retrieve.
result Input/Ouput A pointer to a twPrimitive pointer. In a

successful request, this parameter will end
up with a valid pointer to a
twPrimitive value. The caller is
responsible for deleting the returned
primitive using twPrimitive_Delete.
It is possible for the returned pointer be a
NULL if an error occurred.

96 Edge C SDK Developer’s Guide

Parameter Type Description
timeout Input The time (in milliseconds) to wait for a

response from the server. A value of -1
uses the DEFAULT_MESSAGE_TIMEOUT
as defined in twDefaultSettings.h

forceConnect Input A Boolean value. If TRUE and the API is in
the disconnected state of the duty cycle, the
API will force a reconnect to send the
request.

Return:

• msgCodeEnum— the result of the call. See twDefinitions.h for the
enumeration definition.

Write a Property
This helper function writes a new value for a property of a specific entity on
ThingWorx platform.
enum msgCodeEnum twApi_WriteProperty(enum entityTypeEnum
entityType,
char * entityName, char * propertyName,
twPrimitive * value, int32_t timeout, char forceConnect)

The following table lists and describes the parameters for this helper function:

Parameter Type Description
entityType Input The type of entity that the property belongs

to. Enumeration values can be found in
twDefinitions.h.

entityName Input The name of the entity that the property
belongs to.

propertyName Input The name of the property to retrieve.
value Input A pointer to a twPrimitive that

contains the value to set for the property.
Once called, the calling function will retain
ownership of this pointer and must manage
the memory lifecycle. NOTE: The called
function WILL alter the contents of this
primitive, so the original contents cannot
be relied upon after the function returns..

Interacting with ThingWorx 97

Parameter Type Description
timeout Input The time (in milliseconds) to wait for a

response from the server. A value of -1
uses the DEFAULT_MESSAGE_TIMEOUT
as defined in twDefaultSettings.h.

forceConnect Input A Boolean value. If TRUE and the API is in
the disconnected state of the duty cycle, the
API will force a reconnect to send the
request.

Return:

• msgCodeEnum— the result of the call. See twDefinitions.h for the
enumeration definition.

Push Properties
Use this function to update one or more properties with a single message to
ThingWorx platform. You can also use it to send multiple values of the same
property to ThingWorx platform in a single message.
enum msgCodeEnum twApi_PushProperties(enum entityTypeEnum
entityType,
char * entityName, propertyList * properties, int32_t timeout,
char forceConnect)

The following table lists and describes the parameters for this helper function:

Parameter Type Description
entityType Input The type of entity that the properties

belong to. Enumeration values can be
found in the file, twDefinitions.h

entityName Input The name of the entity that the properties
belong to.

properties Input A pointer to a list of twPrimitives.
The calling function will retain ownership
of this pointer and is responsible for
cleaning up the memory after the call is
complete.

98 Edge C SDK Developer’s Guide

Parameter Type Description
timeout Input The time (in milliseconds) to wait for a

response from the server. A value of -1
uses the DEFAULT_MESSAGE_TIMEOUT
as defined in twDefaultSettings.h

forceConnect Input A Boolean value. If TRUE and the API is in
the disconnected state of the duty cycle, the
API will force a reconnect to send the
request.

Return:

• msgCodeEnum— the result of the call. See twDefinitions.h for the
enumeration definition.

An example usage of the twApi_PushProperties function is as follows:
void sendPropertyUpdate() {propertyList * proplist =

twApi_CreatePropertyList("FaultStatus",
twPrimitive_CreateFromBoolean(properties.FaultStatus), 0);

if (!proplist) {
TW_LOG(TW_ERROR,"sendPropertyUpdate: Error allocating property

list");
return;
}

twApi_AddPropertyToList(proplist,"InletValve",
twPrimitive_CreateFromBoolean(properties.InletValve),

0);
twApi_AddPropertyToList(proplist,"Temperature",

twPrimitive_CreateFromNumber(properties.Temperature),
0);

twApi_AddPropertyToList(proplist,"TotalFlow",
twPrimitive_CreateFromNumber(properties.TotalFlow), 0);

twApi_AddPropertyToList(proplist,"Pressure",
twPrimitive_CreateFromNumber(properties.Pressure), 0);

twApi_AddPropertyToList(proplist,"Location",
twPrimitive_CreateFromLocation(&properties.Location),

0);
twApi_PushProperties(TW_THING, thingName, proplist, -1, FALSE);
twApi_DeletePropertyList(proplist);

}

Execute a Service
This helper function executes a service on a named entity on ThingWorx platform.
enum msgCodeEnum twApi_InvokeService(enum entityTypeEnum
entityType,

char * entityName, char * serviceName,
twInfoTable * params, twInfoTable ** result, int32_t timeout,

Interacting with ThingWorx 99

char forceConnect)

The following table lists and describes the parameters for this helper function:

Parameter Type Description
entityType Input The type of entity that the service belongs

to. Enumeration values can be found in
twDefinitions.h.

entityName Input The name of the entity that the service
belongs to.

serviceName Input The name of the service to execute.
params Input A pointer to an infotable containing the

parameters to be passed in to the service.
The calling function will retain ownership
of this pointer and is responsible for
cleaning up the memory after the call is
complete.

result Input/Ouput A pointer to a twInfoTable pointer. In a
successful request, this parameter will end
up with a valid pointer to a
twInfoTable that is the result of the
service invocation. The caller is responsible
for deleting the returned primitive using
twInfoTable_Delete. It is possible
for the returned pointer be a NULL if an
error occurred or no data is returned.

timeout Input The time (in milliseconds) to wait for a
response from the server. A value of -1
uses the DEFAULT_MESSAGE_TIMEOUT
as defined in twDefaultSettings.h.

forceConnect Input A Boolean value. If TRUE and the API is in
the disconnected state of the duty cycle, the
API will force a reconnect to send the
request.

Return:

• msgCodeEnum— the result of the call. See twDefinitions.h for the
enumeration definition.

Trigger an Event
This helper function triggers a specific event on a named entity on ThingWorx
platform.

100 Edge C SDK Developer’s Guide

enum msgCodeEnum twApi_FireEvent(enum entityTypeEnum entityType,
char * entityName, char * eventName,
twInfoTable * params, int32_t timeout, char forceConnect)

The following table lists and describes the parameters for this helper function:

Parameter Type Description
entityType Input The type of entity that the service belongs

to. Enumeration values can be found in
twDefinitions.h.

entityName Input The name of the entity that the service
belongs to.

eventName Input The name of the event to trigger.
params Input A pointer to an infotable containing the

parameters to be passed to the event. The
calling function will retain ownership of
this pointer and is responsible for cleaning
up the memory after the call is complete.

timeout Input The time (in milliseconds) to wait for a
response from the server. A value of -1
uses the DEFAULT_MESSAGE_TIMEOUT
as defined in twDefaultSettings.h.

forceConnect Input A Boolean value. If TRUE and the API is in
the disconnected state of the duty cycle, the
API will force a reconnect to send the
request.

Return:

• msgCodeEnum— the result of the call. See src/api/
twDefinitions.h for the enumeration definition.

Interacting with ThingWorx 101

9
Building a ThingWorx Edge C SDK

Application
Using CMake with ThingWorx C SDK Examples .. 103
Building Applications with CMake ... 103

Use the information presented here to build the example applications as well as
your own applications. As applicable, you can reuse build files from the examples
or modify a build file to support a new platform.
See the following sections:

• Using CMake with ThingWorx C SDK Examples on page 103
• Building Applications with CMake on page 103

○ Configuring Options for a CMake Build on page 104
○ How to Build for Windows Platforms with CMake on page 107
○ How to Build for Linux Platforms with CMake on page 106
○ How to Build with FIPS Mode Enabled on page 107

102 Edge C SDK Developer’s Guide

Using CMake with ThingWorx C SDK
Examples
The C SDK is a set of ANSI C header and source files that can be easily
integrated into any build environment. As of version 1.4.0 of the C SDK, all
sample applications in the examples directory provide CMakeLists.txt
files for use with CMake. If you do not have CMake, download it from https://
cmake.org/download/. When ready to generate make files or project files for
building your application, create a subdirectory in the directory containing your
source files. You will configure and run cmake within this directory.

Building Applications with CMake
CMake is an open-source, cross-platform set of tools that have been created to
facilitate the tasks of building, testing, and packaging software. You can use
CMake to control the compilation of your applications by using its platform- and
compiler-independent configuration files and to generate native makefiles and
projects to use in your compiler environment. The minimum required version of
CMake to use with the ThingWorx Edge C SDK is 2.6. It is recommended that
CMake be on your system path. If you installed CMake on Linux, it is on the
system path already. If on Windows, you can use the CMake UI or, if using it from
a Command Prompt, add CMake to your system PATH.
For complete information about CMake, visit the CMake web site, at https://
cmake.org/. At the top of the home page, select Resources ▶▶ Documentation to
find the training materials, reference documents for CMake, among other
resources.

Note
It is STRONGLY recommended that you use one of the provided examples as a
starting point for your custom application.

Building a ThingWorx Edge C SDK Application 103

https://cmake.org/download/
https://cmake.org/download/
https://cmake.org/
https://cmake.org/

Configuring Options for a CMake Build

Note
The C SDK build process will now default to an OpenSSL-based build The
axTLS is no longer available in the C SDK distribution. It is strongly
recommended that you use the OpenSSL library provided with the C SDK.
Release 2.2.1 of the C SDK include non-FIPS OpenSSL 32– and 64–bit libraries,
version 1.0.2q, which, on Windows platforms is based on Visual Studio 2015
runtime library. The FIPS OpenSSL libraries of this SDK are still based on Visual
Studio 2012 and therefore still are version 1.0.2l of the OpenSSL libraries.

The ThingWorx Edge C SDK provides a CMakeLists.txt file that shows the
default values for the options for a C SDK application. Always check the
statement at the top of the file, which indicates the minimum version of CMake
that you can use.
You do not edit the CMakeLists.txt file to set options. Instead, when you
generate a make file using cmake, use the -D argument with the command to set
each desired option set. For example, to enable OpenSSL with FIPS mode, use the
cmake command as follows:
cmake -DENABLE_OPENSSL=ON -DENABLE_FIPS_MODE=ON

Note
You can also edit CMake options at any time by editing them in the
CMakeCache.txt files created when you generated your CMake build.

The following table lists and describes these options:

Option Description Default Value
USE_OPENSSL It is recommended that

you use the OpenSSL
library that is provided
with this SDK. By default
CMake will build with
this option.

ON

ENABLE_TUNNELING Specifies whether your
application uses the
tunneling feature (to
support remote sessions
with a device that is

ON

104 Edge C SDK Developer’s Guide

vwilliams
Highlight

vwilliams
Highlight

Option Description Default Value
running your application).
If your application does
not use tunneling, set this
option to OFF.

ENABLE_FILE_XFER Specifies whether your
application performs file
transfers between the
device and ThingWorx
platform. If your
application does not
transfer files, set this
option to OFF.

ON

ENABLE_OFFLINE_
MSG_STORE_RAM

Specifies whether your
application writes
messages to RAM when
the edge device is offline.
Messages stored in RAM
are lost if the device loses
power. If you want
messages to be persisted
during a power outage,
leave this option set to
OFF and set the option,
ENABLE_OFFLINE_
MSG_STORE_RAM, to
ON.

OFF

Building a ThingWorx Edge C SDK Application 105

Option Description Default Value
ENABLE_OFFLINE_
MSG_STORE_FILE

Specifies whether your
application writes
messages to a file when
the edge device is offline.
Messages stored in RAM
are lost if the device loses
power. If you want
messages to be persisted
during a power outage,
leave this option set to ON
and the option, ENABLE_
OFFLINE_MSG_
STORE_RAM, set to OFF.

ON

ENABLE_FIPS_MODE If you are using the
OpenSSLTLS library and
want to use FIPS mode,
set this option to ON.

OFF

How to Build for Linux Platforms with CMake
The following procedure assumes that you have downloaded and extracted CMake
and that you have created a subdirectory where the output of cmake will be
stored within the directory that contains your source files. To build for a Linux
platform using CMake, follow these steps:

1. Navigate to the subdirectory that you created for running cmake.
2. If the parent directory contains your source code (as recommended), run

cmake ... If you want to use a toolchain other than the default, include the
-G argument and specify the toolchain.

3. Run make.
CMake builds your application.

Example
For example, to build the C SDK using CMake
cd tw-c-sdk
mkdir buildoutput
cd buildoutput
cmake ..
make

106 Edge C SDK Developer’s Guide

Specifying a Custom Installation Directory for the C SDK
By default the C SDK headers and libraries install under /usr/local/ when
the make install command is run. To override this default location, use the
CMake variable, CMAKE_INSTALL_PREFIX when running CMake. For
example:
cmake .. -DCMAKE_INSTALL_PREFIX=/opt/thingworx/

Afterwards, running make install would install the C SDK to /opt/
thingworx/.

How to Build for Windows Platforms with CMake
The following procedure assumes that you have downloaded and extracted CMake
and that you have created a subdirectory where the output of cmake will be
stored within the directory that contains your source files. To build for a Windows
platform using CMake, follow these steps:

1. Navigate to the subdirectory that you created for running cmake.
2. Run cmake -G to see a list of all the IDE’s that you can choose.
3. Run cmake -G "Visual Studio 11 2012" ..
4. Open tw-c-sdk.sln in Visual Studio.

How to Build with FIPS Mode Enabled
In addition to working with the OpenSSL library that is provided in the FIPS
version of the C SDK, you need to run cmake with the argument, -DENABLE_
FIPS_MODE=ON.
For more information about using FIPS mode, see FIPS Mode on page 78.

Building a ThingWorx Edge C SDK Application 107

10
Porting to Another Platform

Supporting New Platforms.. 109
Requirements for Platforms.. 109
Defining the Chosen OS .. 109
SSL/TLS Support .. 110
Logging Functions ... 111
Memory Management Functions .. 112
Date/Time Functions.. 112
Synchronization Functions ... 113
Socket Functions... 113
Tasker Functions ... 115
File System Functions ... 115
Native Threads.. 116

To port to a platform other than those that the SDK currently supports (with files
specifically for the platforms), you’ll need the information presented here.
Included here is information about defining the OS, TLS support, and the various
types of functions (logging, memory management, date/time, synchronization,
socket).

108 Edge C SDK Developer’s Guide

Supporting New Platforms
If you are using a platform that is different than the provided options in CMake,
CMake has its own custom toolchain support. Go to https://cmake.org/cmake/
help/v3.6/manual/cmake-toolchains.7.html.

Requirements for Platforms
The ThingWorx Edge C SDK is designed for easy porting to even the most basic
of platforms. The key requirements for the platform are as follows:

• ANSI C compiler and run time support
• TCP/IP stack
• Dynamic memory allocation (malloc, calloc, free)
• Millisecond granularity timer, preferably with a Real Time Clock
• Some form of Mutual Exclusion capability (Mutex, Critical Section, Spinlock,

etc.)
• Tick Timer Interrupt/Callback capability (if using the built-in tasker)
• File System functions if using the File Transfer capability of the SDK
• Threads (optional)
All custom configurations for a platform are typically encapsulated in a single C
source and header file pair. For example, the SDK comes with example ports for
Windows and Linux (or any POSIX environment). The files are located in the
porting directory and are twWindows.h/twWindows.c and twLinux.h/
twLinux.c respectively. It is strongly recommended that you start with one of
these files as the basis for your porting efforts. The Linux port will be used as an
example in the sections that follow.
For the platforms supported by this release of the ThingWorx C SDK, refer to the
ThingWorx Edge Requirements and Compatibility Matrix, which is available on
the PTC Support site, Reference Documents page for ThingWorx products.

Defining the Chosen OS
Building with CMake
With CMake, you can build for a variety of operating systems. CMake
automatically detects the native operating system and chooses the appropriate
build tools.
If you would like to manually specify an IDE within the native operating system,
see the CMake documentation for the list of supported generators.

Porting to Another Platform 109

https://cmake.org/help/v3.6/manual/cmake-toolchains.7.html
https://cmake.org/help/v3.6/manual/cmake-toolchains.7.html
https://support.ptc.com/appserver/cs/doc/refdoc.jsp

If you would like to cross compile, see the CMake documentation on how to set
up cross compiling with a specified toolchain. Some cross-compiling examples
exist as the PLATFORM option in CMakeLists.txt file, but the required cross-
compile tools must be downloaded separately from the ThingWorx C SDK.
If a new porting section is created, you need to add the section to the Compiler
and Linker section of the CMakeLists.txt file. See the examples provided
in the distribution bundle for the C SDK (each example has subdirectories for osx,
linux, and win).

SSL/TLS Support
The C SDK has a pluggable security layer. As of release 2.0.0, it defaults to using
the OpenSSL library that is provided with the SDK for full TLS 1.1 compliant
certificate-based authentication and 128-bit AES encryption.
Good reasons for using the OpenSSL library include compliance with cipher
suites supported by Tomcat (critical for connecting to an instance of ThingWorx
platform), HW-based acceleration, and/or a need for a FIPS compliant
implementation based on OpenSSL.
If you choose to use some library other than the provided OpenSSL library, point
TW_TLS_INCLUDE to the required header file for your implementation. In
addition, you need to set up the C SDK to use your implementation by following
the template provided in the file, twTemplateSSL.h, located in the
subdirectory, /src/tls, of the C SDK installation. This file contains a template
for developing an SSL/TLS wrapper layer for your SSL/TLS implementation.

Note
The NO_TLS option will result in clear-text communications between your
application and ThingWorx platform. The NO_TLS option is provided as a
convenience for development purposes, but is NOT recommended for any
production implementations. If you choose to use that setting you must also
#define NO_TLS.

/***
#define TW_TLS_INCLUDE "twOpenSSL.h"
#define TW_TLS_INCLUDE "twNoTls.h"
#define NO_TLS
***/

110 Edge C SDK Developer’s Guide

vwilliams
Highlight

Tip
A much more practical way to build without using HTTPS for development
purposes is to use the function, twApi_DisableEncryption(). For details, see
also the Doxygen documentation provided with the SDK bundle.

Logging Functions
The C SDK has a pluggable logging provider that defaults to simple printf
statements. The function definition is in the utils/twLogger.c file. Your
platform/OS specific header file also defines some macros for logging, as shown
below.
/* Logging */
#ifdef _DEBUG
#ifndef DBG_LOGGING
#define DBG_LOGGING
#endif
#endif
#ifdef DBG_LOGGING
#define TW_LOGGER_BUF_SIZE 4096 /* Max size of log buffer */
#define TW_LOG(level, fmt, ...) twLog(level, fmt, ##__VA_ARGS__)
#define TW_LOG_HEX(msg, preamble, length) twLogHexString(msg, preamble,
length)
#define TW_LOG_MSG(msg, preamble) twLogMessage(msg, preamble)
#else
#define TW_LOGGER_BUF_SIZE 1
#define TW_LOG(level, fmt, ...)
#define TW_LOG_HEX(msg, preamble, length)
#define TW_LOG_MSG(msg, preamble)
#endif

To minimize the code footprint of a released application, the default for logging is
that it is enabled for debug builds and entirely disabled for release builds. Both the
logging functions and buffer size need to be defined if logging is enabled. The
macros TW_LOG_HEX and TW_LOG_MSG are used to display the hex bytes
moving over the wire and the actual message content, respectively. These
functions tend to have a serious impact on performance and are not recommended
for use in a released system.
The logging system also provides a convenient way for you to define you own
logging function without changing these macros. This function is
int twLogger_SetFunction(log_function f);

For details about this function, refer to the Doxygen documentation provided with
the SDK bundle.

Porting to Another Platform 111

vwilliams
Highlight

Memory Management Functions
The SDK uses dynamic memory allocation and de-allocation. In all but the most
basic of platforms, this means the use of the standard C malloc, calloc, and free
functions. The SDK does not use realloc itself, but any underlying TLS library
may. To create an abstraction layer, the SDK uses #defines to give you the
flexibility of creating your own implementations of these functions. These
definitions, which are required, and their most basic implementations are as
follows:
#define TW_MALLOC(a) malloc(a)
#define TW_CALLOC(a, b) calloc(a,b)
#define TW_REALLOC(a, b) realloc(a, b)
#define TW_FREE(a) free(a)

Date/Time Functions
The SDK requires a timer with millisecond granularity for things such as
messaging timeouts and task scheduling. In addition, some form of real-time clock
may be required if using DATETIME base types or the standard logging plugin.
The DATETIME base type uses the standard javascript representation of
milliseconds since the epoch of midnight 1/1/1970. In the Linux environment this
is represented as an unsigned 64-bit integer with a direct correlation to the number
of milliseconds, but the SDK makes no requirement that a DATETIME must be a
simple element.
/* Time */
typedef uint64_t DATETIME; /* AS DEFINED IN LINUX.H */

To support potentially complex DATETIME structures, a port of the SDK must
provide a few DATETIME manipulation and comparison functions. The function
definitions are in the file, twOSPort.h, but the implementations are typically in
your OS-specific C file, or in the file, twLinux.c for a Linux port. The required
functions are listed and described in the table that follows. For the signature and
parameter definitions for the functions, refer to the Doxygen documentation
provided with the SDK bundle.

Function Description
twTimeGreaterThan Compare two DATETIME entities and returns a value

of TRUE if t1 > t2 or FALSE if not.
twTimeLessThan Compare two DATETIME entities and returns a

TRUE value if t1 < t2 or FALSE if not.
twAddMilliseconds Add a number (msec) of milliseconds to the value in

t1.
twGetSystemMilli
secondCount

Get the current millisecond count since the system
started (or since the epoch if the system time has
millisecond granularity).

112 Edge C SDK Developer’s Guide

Function Description

On systems where the real-time clock has a
millisecond granularity, it is recommended that this
value be the same as the current system time,
representing the current date/time.

twGetSystemTime Get the current system time, representing
milliseconds since the epoch. If utc is TRUE (the
default for the SDK), the time is corrected to
Universal Coordinate Time (UTC).

twGetSystemTime
String

Get the current system time and converts it to a string
using strftime formatting.

twGetTimeString Convert a DATETIME to a string using strftime
formatting.

twSleepMsec Delay execution. In a single-threaded, single-
processor system, this may be a blocking call.

Synchronization Functions
The SDK may run in a multi-threaded or multitasking environment. Therefore, it
is important to protect access to certain data structures. The functions described in
the following table provide such access protection. While they may be stubbed out
in a single-tasking environment, it is highly recommended that these functions be
fully implemented with whatever facility your OS provides. Note that functions
using the TW_MUTEX typedef assume that this will be a pointer to whatever
structure or synchronization mechanism you wish to use.

Function Description
twMutex_Create Create a synchronization entity.
twMutex_Delete Delete a synchronization entity and free up its

memory.
twMutex_Lock Lock the synchronization entity.
twMutex_Unlock Unlock the synchronization entity.

For more information about these functions, refer to the Doxygen documentation
provided with the SDK bundle.

Socket Functions
The C SDK does not include a TCP/IP stack. Rather, it assumes that the
underlying platform provides that functionality. To that end, the SDK has defined
a series of wrapper functions to mask the underlying native socket functions. The
function definitions use an underlying twSocket structure that abstracts away

Porting to Another Platform 113

some of the differences in how certain platforms deal with socket descriptors – for
example, Linux uses an int while Windows uses a HANDLE. The structure is
defined in the file, src/porting/twOSPort.h, as follows:
typedef struct twSocket {

TW_SOCKET_TYPE sock; /* socket descriptor */
TW_ADDR_INFO addr; /* address to use */
TW_ADDR_INFO * addrInfo; /* Addr Info struct head - use to

free */
char state;

} twSocket;

The actual definition of and TW_ADDR_INFO and the implementation of the
functions above should be done in your platform-specific C file. The following
table lists and describes the socket functions that must be provided by a port. For
signatures, parameter details, and return information, refer to the Doxygen
documentation provided with the SDK.

Function Description
twSocket_Create Allocate and initialize a socket

structure.
twSocket_Connect Establish a connection to the specified

host/port pair.
twSocket_Reconnect Re-establish a connection to the

specified host/port pair. The underlying
socket will be torn down and recreated,
but all other twSocket parameters
should remain intact.

twSocket_Close Close a previously opened connection.
twSocket_WaitFor Check to see if data is available on a

socket. Use this function to prevent a
twSocket_Read call from blocking
permanently if no data is available.
This function is especially important if
using the built-in tasker, which cannot
have tasks that block.

twSocket_Read Read data from a socket.
twSocket_Write Write data to a socket.
twSocket_Delete Delete a twSocket structure. This

function should close the socket if it is
still open before deleting the structure.

twSocket_GetLastError Get the error code of the last error that
occurred while using a socket. Note
that this is typically a system-wide call
and not a call to a specific socket.

114 Edge C SDK Developer’s Guide

Tasker Functions
The C SDK has a simple built-in tasker that can be used in conjunction with or in
place of an underlying OS. The key requirement for the underlying architecture is
to provide some sort of tick-timer that allows the execution of what could be a
relatively long running callback function at one millisecond intervals. The
callback function is twTaskerStart. This function initializes the tasker by
setting up a mechanism to call the tickTimerCallback function every
millisecond. This function call is blocking, so it is best to use some separate thread
of execution, or at least re-enable priority interrupts before making this call. This
function is called only once when a process using the API starts.
To shut down the tickTimerCallback mechansim, use the twTaskerStop
function. Call this function only once when a process using the API ends.
For signatures, parameter details, and return information for these functions, refer
to the Doxygen documentation provided with the SDK.

File System Functions
To use the file transfer or directory browsing capability of the C SDK, implement
the functions listed in the following table. For signatures, parameter details, and
return information, refer to the Doxygen documentation provided with the SDK.

Function Description
twDirectory_GetFileInfo Retrieve information about a directory

entry (file or subdirectory).
twDirectory_FileExists Check if a directory entry (file or

directory) exists.
twDirectory_CreateFile Create a file.
twDirectory_MoveFile Move a file.
twDirectory_DeleteFile Delete a file.
twDirectory_
CreateDirectory

Create a directory.

twDirectory_
DeleteDirectory

Delete the specified directory (and all
its contents).

twDirectory_IterateEntries Iterate through a directory, retrieving
the information of the next file or
subdirectory.

twDirectory_GetLastError Retrieve the last error that occurred as a
result of a file system activity.

Porting to Another Platform 115

Native Threads
With the built-in tasker, the C SDK has does not depend on a threading OS.
However, if one is present, there are advantages to using native threads. Therefore,
the C SDK provides a wrapper layer around native threads that maps tasks as
defined for the built-in tasker to native threads. Porting the wrapper to a native
threading model is straightforward and requires the implementation of only a few
functions. These functions are defined in the file src/porting/
twThreads.h.
The twThread structure follows:
typedef struct twThread {

TW_THREAD_ID id;
twTaskFunction func;
uint32_t rate;
char isRunning;
char isPaused;
char shutdownRequested;
char hasStopped;
void * opaquePtr;

}twThread;

The following table lists and describes the functions available for threads. For
details, refer to the Doxygen documentation provided with the SDK.

Function Description
twThread_Create Create a new thread and optionally start

it.
twThread_Delete Stop a thread and free up the thread

structure memory.
twThread_Start Start a thread.
twThread_Stop Stop a thread and optionally specify a

number of milliseconds to wait for the
thread to exit before forcefully killingit.

twThread_Pause Pause the execution of a thread.
twThread_Resume Resume the execution of a thread.
twThread_IsRunning Check if a specified thread is running.
twThread_IsPaused Check if a specified thread is paused.
twThread_IsStopped Check if a specified thread is stopped.

116 Edge C SDK Developer’s Guide

A
Error Codes

General Errors .. 118
Websocket Errors.. 118
Messaging Errors .. 120
Primitive and InfoTable Errors... 122
List Errors ... 123
API Errors... 123
Tasker Errors .. 124
Logger Errors.. 125
Utils Errors.. 125
System Socket Errors .. 126
Message Code Errors.. 128
Subscribed (Managed) Property Errors ... 130
File Transfer Errors.. 130
Tunneling Errors.. 131
TLS Errors .. 132

This section lists and briefly describes the error codes that you may see when
working with the ThingWorx Edge C SDK.

117

General Errors
The following table lists general errors and their corresponding codes:

Code Message Troubleshooting
100 TW_UNKNOWN_ERROR An error occurred, but it was not

recognized by the SDK. You should
not see this error

101 TW_INVALID_PARAM The parameter value is not allowed.
Typically indicative of a NULL
pointer being passed in where a
NULL pointer is not allowed.

102 TW_ERROR_ALLOCATING_
MEMORY

The specified amount of memory
could not be allocated. Make sure
that components free memory when
they exit. Make sure you free up
memory when finished using data
structures. This error is very serious,
and your application will usually
terminate soon after.

103 TW_ERROR_CREATING_
MTX

An error occurred while creating a
mutex.

104 TW_ERROR_WRITING_
FILE

An error occurred while writing to a
file.

105 TW_ERROR_READING_
FILE

An error occurred while reading a
file sent from ThingWorx platform.

106 TW_ERROR_ITEM_EXISTS The referenced entity already exists.
107 TW_ERROR_ITEM_DOES_

NOT_EXIST
The referenced entity does not exist.

108 TW_ERROR_SHAPE_DOES_
NOT_EXIST

The referenced data shape does not
exist.

109 TW_ERROR_TEMPLATE_
DOES_NOT_EXIST

The referenced Edge Thing
Template does not exist.

Websocket Errors
AWebsocket connection is run using a system socket; a system socket sits one
layer lower in the networking stack. All Websocket errors indicate some general
issue communicating with ThingWorx platform. The following table lists
websocket errors, their corresponding codes, and an explanation of the issue.

118 Edge C SDK Developer’s Guide

Note
As of release 1.2 of the C SDK, the default setting for DEFAULT_SOCKET_
READ_TIMEOUT in twDefaultSettings.h is 500 ms. If you are using
axTLS (v.2.2.0 and earlier of the C SDK) and a websocket read times out in
the middle of reading a record, the SSL state is lost. As a result, the SDK tries
to start reading the record header again, and the operation fails. To detect this
situation, check the log for the SDK for the error, twTlsClient_
Read:TimedoutafterXmilliseconds, and consider increasing the
value of the DEFAULT_SOCKET_READ_TIMEOUT. You can change the
setting at runtime by modifying the value of twcfg.socket_ read_
timeout.

Code Message Troubleshooting
200 TW_UNKNOWN_

WEBSOCKET_ERROR
An unknown error occurred on the
websocket. You should not see this
error.

201 TW_ERROR_
INITIALIZING_
WEBSOCKET

An error occurred while initializing
the websocket. Check your
websocket configuration parameters
for validity.

202 TW_TIMEOUT_
INITIALIZING_
WEBSOCKET

A timeout occurred while
initializing the websocket. Check
the status of the connection to
ThingWorx platform.

203 TW_WEBSOCKET_NOT_
CONNECTED

The websocket is not connected to
ThingWorx platform. The requested
operation cannot be performed.

204 TW_ERROR_PARSING_
WEBSOCKET_DATA

An error occurred while parsing
websocket data. The parser could
not break down the data from the
websocket.

205 TW_ERROR_READING_
FROM_WEBSOCKET

An error occurred while reading
data from the websocket. Retry the
read operation. If necessary, resend
the data.

206 TW_WEBSOCKET_FRAME_
TOO_LARGE

The SDK is attempting to send a
websocket frame that is too large.
The Maximum Frame Size is set
when calling twAPI_

Error Codes 119

vwilliams
Highlight

Code Message Troubleshooting
Initialize and should always
be set to the Message Chunk Size
(twcfg.message_chunk_
size).

207 TW_INVALID_
WEBSOCKET_FRAME_TYPE

The type of the frame coming in
over the websocket is invalid.

208 TW_WEBSOCKET_MSG_
TOO_LARGE

The application is attempting to
send a message that has been
broken up in to chunks that are too
large to fit in a frame. You should
not see this error.

209 TW_ERROR_WRITING_TO_
WEBSOCKET

An error occurred while writing to
the Web socket.

210 TW_INVALID_ACCEPT_
KEY

The Accept key sent earlier from
ThingWorx platform is not valid.

Messaging Errors
The following table lists the error codes and messages for Messaging errors and
provides some troubleshooting information.

Code Message Troubleshooting
300 TW_NULL_OR_INVALID_MSG_

HANDLER
The message handler
singleton has not been
initialized.

301 TW_INVALID_CALLBACK_STRUCT The callback structure was
not valid. Check that your
application properly
implements the callback.

302 TW_ERROR_CALLBACK_NOT_
FOUND

The specified callback was
not found. Check the
callback parameters passed to
the function.

303 TW_INVALID_MSG_CODE An attempt to set an invalid
message code was made.
Valid message codes are
defined in
twDefinitions.h. You
should not see this internal
error in your code.

304 TW_INVALID_MSG_TYPE A function was called with
an invalid message code.

120 Edge C SDK Developer’s Guide

Code Message Troubleshooting
Valid message codes are
defined in
twDefinitions.h. You
should not see this internal
error.

305 TW_ERROR_SENDING_MSG An error occurred while
sending the message. Check
the network connections and
the destination host. If
network connections and the
destination host are working
properly, check the
configuration of the
destination host to be sure it
is correct.

306 TW_ERROR_WRITING_OFFLINE_
MSG_
STORE

An error occurred while
writing to the offline
message store.

307 TW_ERROR_MESSAGE_TOO_LARGE The message was too large.
Check that the size you
configured for messages is
adequate for all expected
traffic. Consider increasing
the size.

308 TW_WROTE_TO_OFFLINE_MSG_
STORE

The message was not sent to
ThingWorx platform, but was
stored in the offline message
store. The message will be
delivered next time the
websocket is connected.

309 TW_INVALID_MSG_STORE_DIR The directory for the
message store was not
correct. Make sure the path is
valid and that you have write
permission.

310 TW_MSG_STORE_FILE_NOT_
EMPTY

The on-disk file that is uses
to store offline messages
contains some messages that
have not been sent yet. The
file name cannot be changed.

Error Codes 121

Code Message Troubleshooting
311 TW_NULL_MSG_BODY The body of the message is

empty. The message is not
saved.

312 TW_BIND_MESSAGE_FULL

313 TW_NULL_OR_INVALID_
OFFLINE_MSG_STORE_
SINGLETON

314 TW_ERROR_OFFLINE_MSG_
STORE_FULL

The offline message store has
reached its maximum size.

315 TW_ERROR_INFLATING_
RECEIVED_MSG

An error occurred while
extracting a compressed file
that was received from
ThingWorx platform.

Primitive and InfoTable Errors
The following table lists the errors related to the data structures, twPrimitive
and twInfoTable, and their supporting functions. It also provides suggestions
for troubleshooting. For more information about these data structures, refer to
twPrimitiveStructure on page 87 and twInfoTable on page 89.

Note
When creating an infotable, keep in mind that the twInfoTableRow structure
must contain the field values of the data shape in the same order as in the data
shape.

Code Message Troubleshooting
400 TW_ERROR_ADDING_

DATASHAPE_ENTRY
An error occurred while
attempting to add an entry (field)
to the data shape.

401 TW_INDEX_NOT_FOUND Attempted to access a non-
existent field from a row in an
infotable. The index value must
be less than the number of fields
defined in the data shape.

122 Edge C SDK Developer’s Guide

Code Message Troubleshooting
402 TW_ERROR_GETTING_

PRIMITIVE
The function twInfoTable_
GetPrimitive failed to
retrieve the requested primitive
from the infotable.

403 TW_INVALID_BASE_TYPE The specified base type is not
valid. Check the spelling in your
code, or select a different base
type. For a table of the available
base types, refer to Base Types on
page 88

List Errors
The following table lists the error related to lists (for example, subscribed
properties):

Code Message Troubleshooting
500 TW_LIST_ENTRY_NOT_

FOUND
The entry was not found in the
list. For example, the requested
property was not found in the list
of subscribed properties.

API Errors
The following table lists the errors related to the API:

Code Message Troubleshooting
600 TW_NULL_OR_INVALID_

API_SINGLETON
The API singleton is either null or
invalid. This error occurs if the
API was not initialized properly.
Check the parameters that you are
passing to the initialize function.
Check the log.

601 TW_ERROR_SENDING_RESP An error occurred while sending a
response message to ThingWorx
platform.

602 TW_INVALID_MSG_BODY A message was received from
ThingWorx platform that had an
invalid or malformed message
body.

603 TW_INVALID_MSG_PARAMS A Property PUTwas received
from ThingWorx platform with an
empty parameters infotable. The

Error Codes 123

Code Message Troubleshooting
property value will not be
changed.

604 TW_INVALID_RESP_MSG The response message was not
valid. You should not see this
internal error.

605 TW_NULL_API_SINGLETON The API singleton was null. This
message indicates that the API
was not initialized properly.
Check the parameters that you are
passing to the initialize function.
Check the log.

606 TW_ERROR_CREATING_MSG An error occurred while creating
the message. This error typically
indicates an out-of-memory
condition.

607 TW_ERROR_INITIALIZING_
API

An error occurred while
initializing the API. Check the
parameters that you are passing to
the initialize function. Check the
log.

Tasker Errors
The following table lists the errors related to the Tasker:

124 Edge C SDK Developer’s Guide

Code Message Troubleshooting
700 TW_MAX_TASKS_EXCEEDED You have attempted to create

more tasks than are allowed for
the built-in tasker. The maximum
number of tasks allowed is set at
compile time with the constant
TW_MAX_TASKS which is
defined in twDefinitions.h.
If you have many tasks running
you may wish to consider using
native threads if your platform
supports them.

701 TW_TASK_NOT_FOUND The specified task ID was not
found. Make sure the task ID
passed to this function is correct.
The task ID is returned from the
function call twTasker_
CreateTask.

702 TW_THREADING_MODEL_
FAILED_SHUTDOWN

The task thread failed to shut
down.

Logger Errors
The following table lists the error related to logging:

Code Message Troubleshooting
800 TW_NULL_OR_INVALID_

LOGGER_SINGLETON
The logger singleton was not
initialized properly. This error
indicates a memory allocation
error. Check your TW_LOGGER_
BUF_SIZE setting in your
platform-specific header file in
the src/porting directory.

Utils Errors
The SDK uses Base64 encoding/decoding. The following table lists the related
errors. At this time, the code does not use them.
Code Message
900 TW_BASE64_ENCODE_OVERRUN

901 TW_BASE64_DECODE_OVERRUN

910 TW_ERROR_INITIALIZING_OFFLINE_MSG_STORE

Error Codes 125

System Socket Errors
System Sockets are Operating System-provided networking APIs. The TW_
ERROR_WRITING_TO_SOCKET error in the System Socket category is a
general socket write error. All errors in this category are in the context of a
connection to ThingWorx platform.
As appropriate, first check the network connection between the Thing where your
application is running and ThingWorx platform to resolve the problem. If a proxy
server is used between your edge device and ThingWorx platform, check that the
proxy server is operating properly. If so, check the configuration for the
connection to the proxy server.

Code Message Troubleshooting
1000 TW_ERROR_WRITING_TO_SOCKET General socket write error

encountered while writing to
ThingWorx platform.

1001 TW_SOCKET_INIT_ERROR An error occurred while
initializing the socket. The
network connection may
have dropped.

1002 TW_INVALID_SSL_CERT The SSL certificate provided
by the server was not valid or
was self-signed. Check your
certificate settings.

1003 TW_SOCKET_NOT_FOUND The socket was not found.
The network connection may
have dropped.

1004 TW_HOST_NOT_FOUND The specified ThingWorx
platform was not found.
Check network connections
and make sure that your
application configuration
specifies a valid host address.

1005 TW_ERROR_CREATING_SSL_CTX An error occurred creating
the SSL context.

1006 TW_ERROR_CONNECTING_TO_
PROXY

An error occurred connecting
to the specified proxy server.
Make sure the proxy server
address is correctly specified.
Check network connections.

1007 TW_TIMEOUT_READING_FROM_
SOCKET

An attempt to read from a
socket timed out with no data
available.

126 Edge C SDK Developer’s Guide

Code Message Troubleshooting
1008 TW_ERROR_READING_RESPONSE An error occurred while

reading the response from the
proxy server. Check your
proxy configuration in your
application.

1009 TW_INVALID_PROXY_
CREDENTIALS

The credentials presented to
the proxy server were not
valid. Check with the
administrator for the proxy
server and re-enter the
credentials for the proxy
server. NOTE: While the
connection to the proxy
server is not encrypted, the
credentials are obfuscated
using standard HTTP Basic,
Digest, or NTLM encoding.

1010 TW_UNSUPPORTED_PROXY_AUTH_
TYPE

The specified authentication
type for the proxy server is
not supported. Make sure that
the authentication type is
correctly specified in your
application.

1011 TW_ENABLE_FIPS_MODE_FAILED FIPS Mode could not be
enabled. Ensure that you are
using an OpenSSL library
with FIPS validated
cryptographic algorithms.

1012 TW_FIPS_MODE_NOT_SUPPORTED FIPS Mode is not supported.
Ensure that you are using an
OpenSSL library with FIPS
validated cryptographic
algorithms.

1013 TW_DISABLE_FIPS_MODE_
FAILED

FIPS mode could not be
disabled. Ensure that the call
to disable FIPS mode occurs
during initialization and not
later, after the application has
started and connected to
ThingWorx platform.

Error Codes 127

Message Code Errors
The message code errors can be returned when the SDK makes a request to
ThingWorx platform. They can also be the return values for property/service
requests executed by the application using the SDK. For example, if the server
queried the SDK application for the property ‘temperature’, but the application did
not have that property, it could return TW_NOT_FOUND. The server could also
return the same code if the application asked the server for a property that it did
not have defined.
Most of these are standard HTTP error codes. You can see more information about
them at http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html.

Code Message Troubleshooting
1100 TW_BAD_REQUEST The HTTP request contained

syntax errors, so the server
did not understand it. Modify
the request before attempting
it again..

1101 TW_UNAUTHORIZED The request requires
authentication. This error
results from a failed login
attempt — whether from
credentials that were not
valid or from the request
being sent before
authentication occurred.

1102 TW_ERROR_BAD_OPTION An option or a parameter for
a function has a value that is
not valid or is not spelled
correctly (and so is not
recognized).

1103 TW_FORBIDDEN ThingWorx platform is
denying access to the
requested resource. Check
your permission settings on
ThingWorx platform.

1104 TW_NOT_FOUND This message is returned for
anything that was not found
— a property, a service, a
thing, a data shape, and so
on.

1105 TW_METHOD_NOT_ALLOWED The specified method is not
allowed. Check the spelling

128 Edge C SDK Developer’s Guide

http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html

Code Message Troubleshooting
and syntax of your code.

1106 TW_NOT_ACCEPTABLE Not acceptable.
1107 TW_PRECONDITION_FAILED The precondition for the

operation was not met.
1108 TW_ENTITY_TOO_LARGE This error occurs if you

attempt to send a Property, or
Service or Event parameters
that are too large for
ThingWorx platform to
handle.

1109 TW_UNSUPPORTED_CONTENT_
FORMAT

This error occurs if you
attempt to send a Property, or
Service or Event parameter
that has the wrong baseType
as defined on ThingWorx
platform.

1110 TW_INTERNAL_SERVER_ERROR An error occurred on
ThingWorx platform while
processing this request.

1111 TW_NOT_IMPLEMENTED ThingWorx platform may
return this error if you
attempt a function that is not
implemented.

1112 TW_BAD_GATEWAY A gateway could be bad if it
cannot communicate to the
next component in the chain.

1113 TW_SERVICE_UNAVAILABLE The requested service is not
defined. You could also use
the TW_NOT_FOUND error
code, but this one is more
specific.

1114 TW_GATEWAY_TIMEOUT If the application sends a
request to ThingWorx
platform and does not get a
response within some amount
of time, the service call
results in this error. The
amount of time is
configurable.

Error Codes 129

Subscribed (Managed) Property Errors
The following table lists the errors related to subscribed properties and the
Subscribed Properties Manager:

Code Message Troubleshooting
1200 TW_SUBSCRIBEDPROP_MGR_

NOT_INTIALIZED
The Subscribed Properties
Manager is initialized by
twApi_Initialize
automatically. For this error to
occur, it is most likely that
other, more serious errors have
occurred. Investigate the other
errors first.

1201 TW_SUBSCRIBED_PROPERTY_
NOT_FOUND

The requested subscribed
property was not found.

1202 TW_PROPERTY_CHANGE_
BUFFER_FULL

The buffer that is storing the
name/value pairs to be sent with
a single push is full. If an
attempt is made to add another
property/value, the oldest name/
value pair is dropped.

1203 TW_SUBSCRIBED_PROPERTY_
LIST_PERSISTED

The list of subscribed properties
remains in memory.

1204 TW_SUBSCRIBED_PROPERTY_
LIST_PERSIST_ERROR

An error occurred when
attempting to persist the
subscribed property list.

1205 TW_SUBSCRIBED_PROPERTY_
LIST_UNABLE_TO_PERSIST_
ERROR

The SPM was unable to persist
the list of property/value pairs.

1206 TW_SUBSCRIBED_PROPERTY_
SYNCHRONIZATION_TIMEOUT

During a synchronization of
subscripted properties, a
timeout occurred. The
synchronization did not
complete.

File Transfer Errors
The following table lists the errors for the File Transfer component:

130 Edge C SDK Developer’s Guide

Code Message Troubleshooting
1300 TW_FILE_XFER_MANAGER_

NOT_
INITIALIZED

The File Transfer Manager has
not been initialized. The File
Transfer Manager is initialized
when twApi_Initialize
is called only if ENABLE_
FILE_XFER is defined. If you
wish to use file transfer
functionality make sure
ENABLE_FILE_XFER is
defined.

1301 TW_ERROR_CREATING_
STAGING_DIR

An error occurred while
creating the staging directory.
The error happens if there is an
invalid path or if you do not
have the proper permissions to
create the directory specified.

1302 TW_FILE_NOT_FOUND The specified file for the
transfer was not found. Check
the name of the file specified. If
it is correct, check for the
presence of the file in the file
system at the specified location.

1303 FILE_TRANSFER_FAILED The file transfer operation
failed. The network connection
may have dropped during the
transfer, the destination for the
transfer may be unavailable
(down for maintenance or
power outage), or the MD5
checksum of the file indicated
invalid file content.

Tunneling Errors
The following table lists the errors related to the Tunneling Manager

Error Codes 131

Code Message Troubleshooting
1400 TW_TUNNEL_MANAGER_NOT_

INITIALIZED
The Tunnel Manager has not
been initialized. The Tunnel
Manager is initialized when
twApi_Initialize is
called only if ENABLE_
TUNNELING is defined. If you
wish to use tunneling
functionality make sure
ENABLE_TUNNELING is
defined.

1401 TW_TUNNEL_CREATION_
FAILED

The tunnel was not created.
This error could be because of
an out-of-memory condition.

TLS Errors
The following table lists the error related to TLS security component configured
for the SDK:
Code Message Troubleshooting
1501 TW_TLS_ERROR_LOADING_

FILE
The specified certificate file
could not be loaded. Check the
path specified for the certificate
and that the file is in the
specified location.

132 Edge C SDK Developer’s Guide

B
Callback Function Return Codes

The following table contains the acceptable return codes (msgCodeEnum) for all
Property and Service callback functions. These codes are defined in src/api/
twDefinitions.h. The callback functions are invoked as a result incoming
requests from ThingWorx platform. The property and service callback function
signatures are defined in src/api/twApi.h.

Return Code Returned When
HTTP Client Error Status Codes
TWX_SUCCESS = 0x40 0x40 (2.00) Success. The request

completes successfully.
TWX_BAD_REQUEST = 0x80 0x80 (4.00) Bad request. The HTTP

request contains syntax errors, so the
server cannot understand it. Modify the
request before attempting it again.

TWX_UNAUTHORIZED 0x81 (4.01) Unauthorized. The request
requires authentication. This error
results from a failed login attempt —
whether from credentials that were not
valid or from the request being sent
before authentication occurred.

TWX_BAD_OPTION 0x82 (4.02) Bad option. An option or a
parameter for a function has a value
that is not valid or is not spelled
correctly (and so is not recognized).

133

Return Code Returned When
TWX_FORBIDDEN 0x83 (4.03) Forbidden. ThingWorx

platform is denying access to the
requested resource. Check your
permission settings on ThingWorx
platform.

TWX_NOT_FOUND 0x84 (4.04) Not found. Anything is not
found — a property, a service, a thing,
a data shape, and so on.

TWX_METHOD_NOT_ALLOWED 0x85 (4.05) Method not allowed. The
specified method is not allowed. Check
the spelling and syntax of your code.

TWX_NOT_ACCEPTABLE 0x86 (4.06) Not acceptable.
TWX_PRECONDITION_FAILED =
0x8C

0x8C (4.12) Precondition failed. The
precondition for the operation is not
met.

TWX_ENTITY_TOO_LARGE 0x8D (4.13) Entity too large. An
attempt is made to send a Property, or
Service or Event parameter that is too
large for ThingWorx platform to
handle.

TWX_UNSUPPORTED_CONTENT_
FORMAT = 0x8F

0x8F (4.15) Unsupported content
format. An attempt is made to send a
Property, or Service or Event parameter
that has the wrong baseType as defined
on ThingWorx platform.

HTTP Server Error Status Codes
TWX_INTERNAL_SERVER_ERROR =
0xA0

0xA0 (5.00) Internal server error. An
error occurs on ThingWorx platform
while processing this request.

TWX_NOT_IMPLEMENTED 0xA1 (5.01) Not implemented.
ThingWorx platform may return this
error if you attempt a function that is
not implemented.

TWX_BAD_GATEWAY 0xA2 (5.02) Bad gateway. A gateway
could be bad if it cannot communicate
to the next component in the chain.

TWX_SERVICE_UNAVAILABLE 0xA3 (5.03) Service unavailable. The
requested service is not defined. You
could also use the TW_NOT_FOUND
error code, but this one is more

134 Edge C SDK Developer’s Guide

Return Code Returned When
specific.

TWX_GATEWAY_TIMEOUT 0xA4 (5.04) Gateway timeout. If the
application sends a request to
ThingWorx platform and does not get a
response within some amount of time,
the service call results in this error. The
amount of time is configurable.

TWX_WROTE_TO_OFFLINE_MSG_
STORE

Wrote to offline message store. The
message is not sent to ThingWorx
platform, but instead is stored in the
offline message store. The message will
be delivered next time the websocket is
connected.

Callback Function Return Codes 135

	ThingWorx Edge C SDK Developer's Guide, v.2.2.1
	Contents
	Document Revision History
	About this Guide
	Introducing the ThingWorx Edge C SDK
	Installing and Navigating the Directories of the C SDK

	Getting Started
	Configuring Components of the C SDK
	Handling Offline Messages
	Minimizing Code Footprint

	Steps for Setting Up Applications
	Defining Properties
	Defining Events
	Define Property Callback Functions
	Define Service Callback Functions
	Create Your Tasks (Optional)
	Creating a Bind Event Handler (Optional)
	Create a File Transfer Event Handler (Optional)
	Create a Tunnel Event Handler (Optional)
	Implementing a Synchronized State Handler

	Running the C SDK
	Initializing the API Singleton
	Registering Properties and Services
	Registering Events
	Binding Your Entities
	Initializing the File Manager (Optional)
	Initializing the Tunnel Manager (Optional)
	Creating a Bind Event Handler (Optional)
	Using the Utilities of the C SDK
	Using Linked Lists, Maps, and Dictionaries

	Connecting to the Server and Initiating Defined Tasks
	Running the C SDK on Windows-based Operating Systems

	Setting Up Security
	Using SSL/TLS for Security
	Setting Up Secure Connections
	Proxy Server Authentication
	FIPS Mode
	Support for Cipher Suites
	Debugging with GDB and OpenSSL on ARM Platforms
	Troubleshooting Connection Errors (C SDK v.1.4.0 and earlier)

	Using Edge Extensions
	ThingWorx Edge SDK Extensions for the C SDK
	Creating a Directory of Registered Shapes and Templates
	Loading Shape Libraries
	Tasks for EdgeThingShape and EdgeThingTemplate Constructors
	Macros for the Edge Extensions
	Macros That Take Actions
	Macros to Create twPrimitives from C Primitives
	Macros to Create Data Shapes and Single Columns
	Macros to Create InfoTables for Data Shapes
	Declaring Edge Things
	Defining Aspects for Properties

	Services
	Events
	Best Practices for Developing Edge Extensions
	Examples of Using Edge Extensions with the C SDK
	Simple Thing Extension
	Warehouse Shape Library

	Advanced Use of Edge Extensions
	Modifying Property Values at Runtime
	Property Change Listeners

	Applying EdgeThingShapes at Runtime
	Inter-Shape Communication
	Calling ThingWorx Platform Functions
	Polling Updates for EdgeThingShapes

	Interacting with ThingWorx
	Basic Data Structures
	twPrimitive Structure
	ThingWorx Base Types
	twInfoTable

	Server-Initiated Interaction
	Property Access Callbacks
	Service Callbacks

	SDK Application-Initiated Interaction
	Read a Property
	Write a Property
	Push Properties
	Execute a Service
	Trigger an Event

	Building a ThingWorx Edge C SDK Application
	Using CMake with ThingWorx C SDK Examples
	Building Applications with CMake
	Configuring Options for a CMake Build
	How to Build for Linux Platforms with CMake
	How to Build for Windows Platforms with CMake
	How to Build with FIPS Mode Enabled

	Porting to Another Platform
	Supporting New Platforms
	Requirements for Platforms
	Defining the Chosen OS
	SSL/TLS Support
	Logging Functions
	Memory Management Functions
	Date/Time Functions
	Synchronization Functions
	Socket Functions
	Tasker Functions
	File System Functions
	Native Threads

	Error Codes
	Callback Function Return Codes

