RUT360 Modbus $\underline{\text{Main Page}} > \underline{\text{RUT Routers}} > \underline{\text{RUT360}} > \underline{\text{RUT360 Manual}} > \underline{\text{RUT360 WebUI}} > \underline{\text{RUT360 Services section}} > \underline{\text{RUT360}}$ $\underline{\text{Modbus}}$ The information in this page is updated in accordance with firmware version **RUT36X R 00.07.07.1**. #### **Contents** - 1 Summary - 2 Modbus TCP Server - 3 Modbus Registers - 3.1 Get Parameters - 3.2 Set Parameters - 4 Modbus TCP Client - 4.1 Server Device Configuration - 4.2 Requests Configuration - 4.3 Alarms Configuration - 5 MQTT Modbus Gateway - <u>5.1 Request messages</u> - <u>5.2 Response messages</u> - <u>5.3 Examples</u> - 6 See also ## **Summary** **Modbus** is a serial communications protocol. Simple and robust, it has become a de facto standard communication protocol and is now a commonly available means of connecting industrial electronic devices. This manual page provides an overview of the Modbus functionality in RUT360 devices. **Note:** On RUT360, Modbus TCP Server/Client and MQTT Gateway is additional software that can be installed from the **System** → **Package Manager** page. If you're having trouble finding this page or some of the parameters described here on your device's WebUI, you should **turn on "Advanced WebUI" mode**. You can do that by clicking the "Advanced" button, located at the top of the WebUI. ## **Modbus TCP Server** A **Modbus TCP Server** listens for connections from a TCP Client (client) and sends out a response or sets some system related parameter in accordance with the given query. This provides the user with the possibility to set or get system parameters. The figure below is an example of the Modbus TCP window section and the table below provides information on the fields contained in that window: | Field | Value | Description | |------------------------------|---|--| | Enable | off on; default: off | Turns Modbus TCP on or off. | | Port | integer [065535];
default: 502 | TCP port used for Modbus communications. | | Device ID | integer [0255]; default: 1 | The device's Modbus server ID. When set to 0, it will respond to requests addressed to any ID. | | Mobile Data type | Bytes Kilobytes
Megabytes; default: Bytes | Selects mobile data unit representation type. | | Allow remote access | off on; default: off | Allows remote Modbus connections by adding an exception to the device's firewall on the port specified in the field above. | | Keep persistent connection | off on; default: onn | Allows keep the connection open after responding a Modbus TCP client request. | | Connection timeout | integer [060]; default: 0 | Sets TCP timeout in seconds after which the connection is forcefully closed. | | Enable custom register block | off on; default: off | Allows the usage of custom register block. | | Register file path | path; default:
/ tmp/regfile | Path to file in which the custom register block will be stored. Files inside /tmp or /var are stored in RAM. They vanish after reboot, but do not degrade flash memory. Files elsewhere are stored in flash memory. They remain after reboot, but degrade flash memory (severely, if operations are frequent). | | First register number | integer [102565536];
default: 1025 | First register in custom register block | | Register count | integer [164512];
default: 128 | Register count in custom register block | ## **Modbus Registers** #### **Get Parameters** Modbus parameters are held within **registers**. Each register contains 2 bytes of information. For simplification, the number of registers for storing numbers is 2 (4 bytes), while the number of registers for storing text information is 16 (32 bytes). The register numbers and corresponding system values are described in the table below: | required | value | register address | register number | number of registers | representation | |--|-------|------------------|-----------------|---------------------|-------------------------| | System uptime | 1 | 2 | 2 | 3 | 32 bit unsigned integer | | Mobile signal strength (RSSI in dBm) | 3 | 4 | 2 | 3 | 32 bit integer | | System temperature (in 0.1 °C) | 5 | 6 | 2 | 3 | 32 bit integer | | System hostname | 7 | 8 | 1 | 6 | Γext | | GSM operator name | 23 | 3 24 | 1 | 6 | Γext | | Router serial number | 39 | 40 | 10 | 6 | Γext | | LAN MAC address | 55 | 56 | 1 | 6 | Гext | | Router name | 71 | . 72 | 1 | 6 | Γext | | Network registration info | 10 | 3 104 | . 10 | 6 | Γext | | Network type | 11 | 9 120 |) 10 | 6 | Гext | | Current WAN IP address | 13 | 140 | 2 | 8 | B bit unsigned integer | | Mobile data received today (SIM1) | 18 | 186 | 5 2 | 3 | 32 bit unsigned integer | | Mobile data sent today (SIM1) | 18 | 37 188 | 3 2 | 3 | 32 bit unsigned integer | | Mobile data received this week (SIM1) | 18 | 190 | 2 | 3 | 32 bit unsigned integer | | Mobile data sent this week (SIM1) | 19 | 01 192 | 2 | 3 | 32 bit unsigned integer | | Mobile data received this month (SIM1) | 19 | 3 194 | 2 | 3 | 32 bit unsigned integer | | Mobile data sent this month (SIM1) | 19 | 95 196 | 5 2 | 3 | 32 bit unsigned integer | | Mobile data received last 24h (SIM1) | 19 | 7 198 | 3 2 | 3 | 32 bit unsigned integer | | Mobile data sent last 24h (SIM1) | 19 | 99 200 | 2 | 3 | 32 bit unsigned integer | | Mobile data received last 7 days (SIM1) | 29 | 293 | 3 2 | 3 | 32 bit unsigned integer | | Mobile data sent 7 days (SIM1) | 29 | 94 295 | 5 2 | 3 | 32 bit unsigned integer | | Mobile data received last 30 days (SIM1) | 29 | 96 297 | 2 | 3 | 32 bit unsigned integer | | Mobile data sent last 30 days (SIM1) | 29 | 98 299 | 2 | 3 | 32 bit unsigned integer | | PIN 3 status (4 PIN connector) | 32 | 14 325 | 5 1 | 1 | 16 bit unsigned integer | | PIN 4 status (4 PIN connector) | 32 | .5 326 | 5 1 | 1 | 16 bit unsigned integer | | PIN 3 direction | 32 | 26 327 | 1 | 1 | 16 bit unsigned integer | | PIN 4 direction | 32 | 27 328 | 3 1 | 1 | 16 bit unsigned integer | | Modem ID | 32 | 18 329 | 8 | 1 | Γext | | IMSI | 34 | 8 349 | 1 | 6 | Γext | | Unix timestamp | 36 | 365 | 5 2 | 3 | 32 bit unsigned integer | | Local ISO time | 36 | 66 367 | 1 | 2 | Γext | | UTC time | 37 | 78 389 | 1: | 2 | Гext | | LAN IP | 39 | 395 | 5 2 | 8 | B bit unsigned integer | | Add SMS | 39 | 7 398 | 9 | 0 1 | Гext | | | | | | | | ### **Set Parameters** The Modbus daemon can also set some device parameters. | value to set | register address | register number | register value | description | |---|------------------|-----------------|-------------------------------|--| | Hostname | 7 | 8 | Hostname (in decimal form) | Changes hostname | | Device name | 71 | 72 | Device name (in decimal form) | Changes device name | | Switch WiFi ON/OFF | 203 | 204 | 1 0 | Turns WiFi ON or OFF | | Switch mobile data connection (ON/OFF*) | 204 | 205 | 1 0 | Turns mobile data connection ON or OFF | | Reboot | 206 | 207 | 1 | Reboots the router | | Change APN | 207 | 208 | APN code | Changes APN. The number of input registers may vary depending on the length of the APN, but the very first byte of the set APN command denotes the number of the SIM card for which to set the APN. This byte should be set to: • 1 - to set APN for SIM1 • 2 - to set APN for SIM2 | | Switch PIN 3 state | 324 | 325 | 1 0 | Toggles PIN 3 ON or OFF, when output is selected | | Switch PIN 4 state | 325 | 326 | 1 0 | Toggles PIN 4 ON or OFF, when output is selected | | Switch PIN 3 direction | 326 | 327 | 1 0 | Toggles PIN 3 direction between INPUT (0) or OUTPUT (1) | | Switch PIN 4 direction | 327 | 328 | 1 0 | Toggles PIN 4 direction between INPUT (0) or OUTPUT (1) | | Switch 2.4GHz WiFi ON/OFF | 390 | 391 | 1 0 | Turns 2.4GHz WiFi ON or OFF | | Change LAN IP | 394 | 395 | IPv4 (in decimal form) | Changes device LAN IP | | Send SMS | 396 | 397 | 1 0 | Sends an SMS with content defined in Add SMS (397) register | | Add SMS | 397 | 398 | Message (in decimal form) | Define SMS content which will be sent using Send SMS (396) register. The register array is split into two parts that represent the recipient's "phone number" (first 10 registers) and the "SMS message contents" (remaining 80 registers). | # **Modbus TCP Client** A **Modbus Client** device can request data from Modbus servers. The Modbus TCP Client section is used to configure Modbus TCP servers and enable Client. Notice the Global section config. It is used to outright turn the service off or on if any active configurations are present. Clicking the Cog icon opens a modal window. The global configuration slider can be set and it's state saved. By default, the server list is empty and client is disabled. To add a new server, click the 'Add' button After clicking 'Add' you will be redirected to the newly added server's configuration page. ## **Server Device Configuration** The **Server Device Configuration** section is used to configure the parameters of Modbus TCP servers that the Client (this RUT360 device) will be querying with requests. The figure below is an example of the Server Device Configuration and the table below provides information on the fields contained in that section: | Field | Value | Description | |--------------------|--|---| | Enabled | off on; default: off | Turns communication with the server device on or off. | | Name | string; default: none | Server device's name, used for easier management purposes. | | Server ID | integer [0255]; default: none | Server ID. Each server in a network is assigned a unique identifier ranging from 1 to 255. When the client requests data from a server, the first byte it sends is the Server ID. When set to 0, the server will respond to requests addressed to any ID. | | IP address | ip4; default: none | Server device's IP address. | | Port | integer [065535]; default: \mathbf{none} | Server device's Modbus TCP port. | | Timeout | integer [130]; default: 5 | Maximum response wait time. | | Always reconnect | off on; default: off | Create new connection after every Modbus request. | | Number of timeouts | integer [010]; default: 1 | Skip pending request and reset connection after number of request failures. | | Frequency | Period Schedule; default: Period | | | Delay | integer [0999]; default: 0 | Wait in milliseconds after connection initialization. | | Period | integer [199999]; default: \mathbf{none} | Interval in seconds for sending requests to this device | #### **Requests Configuration** A Modbus **request** is a way of obtaining data from Modbus servers. The client sends a request to a server specifying the function code to be performed. The server then sends the requested data back to the Modbus client. **Note:** Modbus TCP Client uses *Register Number* instead of *Register Address* for pointing to a register. For example, to request the *Uptime* of a device, you must use **2** in the *First Register* field. The Request Configuration list is empty by default. To add a new Request Configuration loon to the Add New Instance section. Enter a custom name into the 'Name' field and click the 'Add' button: The new Request Configuration should become visible in the list: | Field | Value | Description | |-------------------------------|--|---| | Name | string; default: Unnamed | Name of this Request
Configuration. Used for easier
management purposes. | | Data type | 8bit INT 8bit UINT 16bit INT, high byte first 16bit INT, low byte first 16bit UINT, high byte first 16bit UINT, low byte first 32bit float (various Byte order) 32bit INT (various Byte order) 32bit UINT (various Byte order) 64bit INT (various Byte order) 64bit UINT (various Byte order) 64bit float (various Byte order) ASCII Hex Bool PDU; default: 16bit INT, high byte first | Defines how read data will be stored. | | Function | Read coils (1) Read input coils (2) Read holding registers (3) Read input registers (4) Set single coil (5) Set single coil register (6) Set multiple coils (15) Set multiple holding registers (16); default: Read holding registers (3) | Specifies the type of register being addressed by a Modbus request. | | First Register | integer [065535]; default: 1 | First Modbus register from which data will be read. | | Register
Count /
Values | integer [12000]; default: 1 | Number of Modbus registers that will be read during the request. | | Remove
Brackets | off on; default: off | Removes the starting and ending brackets from the request (only for read requests). | | off/on slider | off on; default: off | Turns the request on or off. | | Delete [X] | - (interactive button) | Deletes the request. | **Additional note:** by default the newly added Request Configurations are turned off. You can use the on/off slider to the right of the Request Configuration to turn it on: After having configured a request, you should see a new 'Request Configuration Testing' section appear. It is used to check whether the configuration works correctly. Simply click the 'Test' button and a response should appear in the box below. **Note:** to use test buttons, you need to enable <u>Client section</u>. A successful response to a test may look something like this: ### **Alarms Configuration** **Alarms** are a way of setting up automated actions when some Modbus values meet user-defined conditions. When the Modbus TCP Client (this RUT360 device) requests some information from a server device it compares that data to with the parameters set in an Alarm Configuration. If the comparison meets the specified condition (more than, less than, equal to, not equal to), the Client performs a user-specified action, for example, a Modbus write request or switching the state of an output. The figure below is an example of the Alarms Configuration list. To create a new Alarm, click the 'Add' button. After adding the Alarm you should be redirected to its configuration page which should look similar to this: | Field | Value | Description | |---------------|--|---| | Enabled | off on; default: off | Turns the alarm on or off. | | Function code | Read Coil Status (1)
Read Input Status (2)
Read Holding Registers
(3) Read Input
Registers (4); default:
Read Coil Status (1) | Modbus function used for this alarm's Modbus request. The Modbus TCP Client (this RUT360 device) perform this request as often as specified in the 'Period' field in Server Device Configuration. | | Compared condition data type | 8bit INT 8bit UINT 16bit INT, high byte first 16bit INT, low byte first 16bit UINT, high byte first 16bit UINT, low byte first 32bit float (various Byte order) 32bit INT (various Byte order) 32bit UINT (various Byte order) 64bit INT (various Byte order) 64bit UINT (various Byte order) 64bit float (various Byte order) ASCII Hex Bool; default: 16bit INT, high byte first | Select data type that will be used for checking conditions. | |--|--|--| | First register
number | integer [165536];
default: none | Number of the Modbus coil/input/holding-register/input-register to read from. | | Values | various; default: none | The value against which the read data will be compared. | | Condition | More than Less than
Equal to Not Equal to
Less or equal More or
equal; default: More
than | When a value is obtained it will be compared against
the value specified in the following field. The
comparison will be made in accordance with the
condition specified in this field. | | Action
frequency | Every trigger First
trigger; default: Every
trigger | Describes how frequently the specified action will be taken. | | Redundancy protection | off on; default: off | Protection against executing a configured action too often. | | Redundancy
protection
period | integer [186400];
default: none | Duration to activate redundancy protection for, measured in seconds. This field becomes visible only when 'Redundancy protection' is turned on. | | Action | Ubus event SMS MODBUS Write Request Trigger output MQTT message; default: MODBUS Write Request | Action that will be taken if the condition is met. Possible actions: • SMS - sends and SMS message to a specified recipient(s). • Modbus Request - sends a Modbus Write request to a specified server. • Trigger output - changes state of selected I/O output pin. | | SMS: Message | string; default: none | SMS message text. | | SMS: Phone number | phone number; default: none | Recipient's phone number. | | MODBUS Write
Request: IP
address | ip host; default: none | Modbus server's IP address. | | MODBUS Write
Request: Port | integer [065535];
default: none | Modbus server's port. | | MODBUS Write
Request:
Timeout | integer [130]; default: 5 | Maximum time to wait for a response. | MODBUS Write integer [1..255]; default: Request: ID none Set Single Coil (5) | Set Single Register (6) | Set MODBUS Write Request: Multiple Coils (15) | Set Modbus function Multiple Registers (16); default: Set Single Coil **(5)** 8bit INT | 8bit UINT | 16bit INT, high byte first | 16bit INT, low byte first 16bit UINT, high byte first | 16bit UINT, low byte first | 32bit float MODBUS Write data type Request: (various Byte order) | 32bit INT (various Byte Executed action order) | 32bit UNIT > (various Byte order) 64bit INT (various Byte order) | 64bit UINT (various Byte order) | 64bit float (various Byte order) | ASCII | Hex | Bool; default: **Bool** **MODBUS** Write Request: First register number integer [0..65535]; default: none MODBUS Write integer [0..65535]; Request: Values default: none Configurable Input/Output (3) | Trigger output: Output Configurable Input/Output (4); default: Configurable Input/Output (3) Trigger output: I/O Action Turn On | Turn Off | Invert; default: Turn On Modbus server ID. A function code specifies the type of register being addressed by a Modbus request. Select data type that will be used for executing action. Begins reading from the register specified in this field. Register/Coil values to be written (multiple values must be separated by space character). Selects which output will be triggered. Selects the action performed on the output. Below this field you can find special codes that begin with the '%' sign. Each code represents a piece information related to the status of the device. Include these codes in the field for dynamic information reports. Possible values: Local time, Unix time, Router name, Device name, Serial number, Current FW version, LAN IP address, Monitoring status, UTC time in ISO, WAN IP address, New line, Modbus server ID, Modbus server IP, First register number, Register value, Mobile IP addresses, Signal strength, Operator name, Network type, Data connection state, Network state, IMSI, IMEI, Modem model, Modem serial number, SIM pin state, SIM state, RSCP, ECIO, RSRP, SINR, RSRQ, ICCID, CELLID, Neighbour cells, Network info, Network serving, WAN MAC address, Analog Current Loop (6,9), Analog Input (6,9), Input (3), Digital Input (1), Output (4), Isolated Output (3,4,8), Isolated Input (2,7), Relay MQTT message: **ISON** format string; default: none MQTT message: Hostname host | ip; default: none Port. MQTT message: integer [0..65535]; default: 1883 MQTT message: positive integer; default: Keepalive none MQTT message: Topic string; default: none MOTT message: positive integer; default: Client ID none At most once (0) | At QoS MQTT message: least once (1) | Exactly once (2); default: At most once (0) MQTT message: off | on; default: off Use root CA MQTT message: Use TLS off | on; default: off MQTT message: Use credentials off | on; default: off Broker's IP address or hostname. Broker's port number. (5,10) The number of seconds after which the broker should send a PING message to the client if no other messages have been exchanged in that time The name of the topic that the broker will subscribe to. Client ID to send with the data. If empty, a random client ID will be generated A period of time (in seconds) which has to pass after a trigger event before this Action is executed. Use root CA for verifying the servers certificates Turns the use of TLS/SSL for this MQTT connection on or off. Turns the use of username and password for this MQTT connection on or off. ## **MQTT Modbus Gateway** The MQTT Modbus Gateway function is used to transfer Modbus data (send requests, receive responses) over MQTT. When it is enabled, the device (this RUT360) subscribes to a REQUEST topic and publishes on a RESPONSE topic on a specified MQTT broker. It translates received MQTT message payload to a Modbus request and relays it to the specified Modbus TCP server. When the MQTT Gateway receives a response from the server, it translates it to an MQTT message and publishes it on the RESPONSE topic. Below is an example of the MQTT Gateway page. Refer to the table for information on MQTT Gateway configuration fields. | Field | Value | Description | |-------------------------------|---|--| | Enable | off on; default: off | Turns MQTT gateway on or off. | | Host | ip host; default: 127.0.0.1 | IP address or hostname of an MQTT broker. | | Port | integer [065535]; default: 1883 | Port number of the MQTT broker. | | Request topic | alphanumeric string; default: request | MQTT topic for sending requests. | | Response topic | alphanumeric string; default: response | MQTT topic for subscribing to responses. | | QoS | At most once (0) At least once (1) Exactly once (2); default: Exactly once (2) | Specifies quality of service. | | Username | string; default: none | Username for authentication to the MQTT broker. | | Password | string; default: none | Password for authentication to the MQTT broker. | | Client ID | integer; default: none | Specifies client ID for MQTT broker. | | Keepalive | integer; default: 5 | Keepalive message to MQTT broker (seconds) | | Use TLS/SSL | off on; default: off | Turns TLS support on or off | | TLS type | cert psk; default: cert | Selects the type of TLS encryption | | TLS insecure | off on; default: off | Disables TLS security | | Certificate files from device | off on; default: off | Choose this option if you want to use certificate files generated on device. | | CA file | string; default: none | Upload/select certificate authority file. | | Certificates file | string; default: none | Upload/select certificate file. | | Key file | string; default: none | Upload/select certificate key file. | | PSK | string; default: none | Specifies the pre-shared key. | | Identity | string; default: none | Specifies identity. | #### **Request messages** **Note:** MQTT Gateway uses *Register Number* instead of *Register Address* for pointing to a register. For example, to request the *Uptime* of a device, you must use **2** in the *Register Number* field. Modbus request data sent in the MQTT payload should be generated in accordance with the one of the following formats: • TCP: 0 <COOKIE> <IP_TYPE> <IP> <PORT> <TIMEOUT> <SERVER_ID> <MODBUS_FUNCTION> <FIRST_REGISTER> <REGISTER_COUNT/VALUES> • Serial: # 1 <COOKIE> <SERIAL_DEVICE_ID> <TIMEOUT> <SERVER_ID> <MODBUS_FUNCTION> <FIRST_REGISTER> <REGISTER_COUNT/VALUES> • MODBUS TCP connection management messages: # 2 <COOKIE> <CONNECTION_INDEX> <ACTION> 2 <COOKIE> <CONNECTION_INDEX> 0 <IP_TYPE> <IP> <PORT> <TIMEOUT> #### Explanation: - **Cookie** a 64-bit unsigned integer in range [0..2⁶⁴-1]). A cookie is used in order to distinguish which response belongs to which request, each request and the corresponding response contain a matching cookie: a 64-bit unsigned integer. - IP type host IP address type. Possible values: - **0** IPv4 address; - 1 IPv6 address: - 2 hostname that will be resolved to an IP address. - **IP** IP address of a Modbus TCP server. IPv6 must be presented in full form (e.g., 2001:0db8:0000:0000:0000:8a2e:0370:7334). - Port port number of the Modbus TCP server. - **Timeout** timeout for Modbus connection, in seconds. Range [1..999]. - **Server ID** Modbus TCP server ID. Range [1..255]. - **Modbus function** Modbus task type that will be executed. Possible values are: - 1 read coils; - ∘ 2 read input coils; - ∘ **3** read holding registers; - 4 read input registers; - ∘ **5** set single coil; - ∘ **6** write to a single holding register; - **15** set multiple coils; - **16** write to multiple holding registers. - **First register** number (not address) of the first register/coil/input (in range [1..65536]) from which the registers/coils/inputs will be read/written to. - **Register count/value** this value depends on the Modbus function: - ∘ 1 coil count (in range [1..2000]); must not exceed the boundary (first coil number + coil count <= 65537); - 2 <u>input count</u> (in range [1..2000]); must not exceed the boundary (first input number + input count <= 65537); - **3** <u>holding register count</u> (in range [0..125]); must not exceed the boundary (first register number + holding register count <= 65537); - **4** <u>input register count</u> (in range [0..125]); must not exceed the boundary (first register number + input register count <= 65537); - ∘ **5** <u>coil value</u> (in range [0..1]); - **6** holding register value (in range [0..65535]); - **15** <u>coil count</u> (in range [1..1968]); must not exceed the boundary (first coil number + coil count <= 65537); and <u>coil values</u> separated with commas, without spaces (e.g., 1,2,3,654,21,789); there must be exactly as many values as specified (with coil count); each value must be in the range of [0..1]. - **16** <u>register count</u> (in range [1..123]); must not exceed the boundary (first register number + register count <= 65537); and <u>register values</u> separated with commas, without spaces (e.g., 1,2,3,654,21,789); there must be exactly as many values as specified (with register count); each value must be in the range of [0..65535]. - **Serial device ID** a string used to identify a serial device. Must match with <u>Device ID</u> field in MQTT Gateway page Serial gateway configuration section. - **Connection index** a number used to identify a connection on which an action will be preformed (in range [0..7]). - Action a connection action. Possible values are: - \circ **0** OPEN. This will open a closed connection, reopen an already open connection with the same parameters or close an already open connection and open a new one with new parameters. - 1 CLOSE. This will close an open connection and do nothing to the closed one. - \circ 2 STATUS. This will respond with either **OK 1** for an open connection or **OK 0** for a closed connection. #### Response messages A special response message can take one of the following forms: ### **Examples** Below are a few **examples** of controlling/monitoring the internal Modbus TCP Server on RUT360. #### Reboot the device • Request: ``` 0 65432 0 192.168.1.1 502 5 1 6 206 1 ``` • Response: 65432 OK #### Retrieve uptime • Request: ``` 0 65432 0 192.168.1.1 502 5 1 3 2 2 ``` • Response: If you're using Eclipse Mosquitto (MQTT implementation used on RUT360), Publish/Subscribe commands may look something like this: ### **Retrieve uptime** • Request: ``` mosquitto_pub -h 192.168.1.1 -p 1883 -t request -m "0 65432 0 192.168.1.1 502 5 1 3 2 2" ``` • Response: ``` mosquitto_sub -h 192.168.1.1 -p 1883 -t response 65432 OK 0 5590 ``` # See also • Monitoring via Modbus - detailed examples on how to use Modbus TCP