https://wiki.teltonika-networks.com/view/RUT955 Modbus (legacy WebUI)

RUT955 Modbus (legacy WebUI)

Main Page > RUT Routers > RUT955 > RUT955 Manual > RUT955 L.egacy WebUI > RUT955 Services section (legacy) >
RUT955 Modbus (legacy WebUI)

The information in this page is updated in accordance with firmware version
RUTI9XX R 00.06.09.5.

Note: this user manual page is for RUT955's old WebUI style available in earlier FW versions. Click
here for information based on the latest FW version.

|

Contents

e 1 Summary
e 2 Modbus TCP

o 2.1 Get Parameters
o 2.2 Set Parameters
e 3 Modbus TCP Master

o 3.1 Slave device configuration
o 3.2 Requests configuration

o 3.3 Alarm configuration
e 4 Modbus Serial Master

o 4.1 RS232
o 4.2 RS485
o 4.3 Slaves
» 4.3.1 Slave settings
= 4.3.2 Slave requests
= 4.3.3 Slave alarms
¢ 5 Modbus Data to Server

o 5.1 Data sender configuration
e 6 MQTT Gateway

o 6.1 Request messages

o 6.2 Response messages

o 6.3 Examples
e 7 See also

Summary

Modbus is a serial communications protocol. Simple and robust, it has become a de facto standard
communication protocol and is now a commonly available means of connecting industrial electronic
devices.

This chapter of the user manual provides an overview of the Modbus page for RUT955 devices.

https://wiki.teltonika-networks.com/view/Main_Page
https://wiki.teltonika-networks.com/view/RUT_Routers
https://wiki.teltonika-networks.com/view/RUT955
https://wiki.teltonika-networks.com/view/RUT955_Manual
https://wiki.teltonika-networks.com/view/RUT955_Legacy_WebUI
https://wiki.teltonika-networks.com/view/RUT955_Services_section_(legacy)
http://wiki.teltonika-networks.com/images/e/ef/RUT9XX_R_00.06.09.5_WEBUI.bin
http://wiki.teltonika-networks.com/view/RUT955_Modbus
http://wiki.teltonika-networks.com/view/RUT955_Modbus

Modbus TCP

Modbus TCP provides users with the possibility to set or get system parameters. The Modbus
daemon acts as slave device. That means it accepts connections from a master (client) and sends out
a response or sets some system related parameter in accordance with the given query.

The figure below is an example of the Modbus TCP window section and the table below provides
information on the fields contained in that window:

(]

Field Value Description
Enable yes | no; default: none Turns Modbus TCP on or off.
integer [0..65535];

Port default: 502 TCP port used for Modbus communications.
Device ID integer [0..255]; The device's Modbus slave ID. When set to 0, it will
default: 1 respond to requests addressed to any ID.

Allows remote Modbus connections by adding an
yes | no; default: no exception to the device's firewall on the port specified
in the field above.

If enabled, the connection will not be closed after
each completed Modbus request.

integer [1..60]; default: Timeout in seconds after which the connection will be
0 g UR " closed. Use 0 to use default value provided by
Operating System.

Allow Remote
Access

Keep persistent
connection

yes | no; default: no
Connection timeout

Enable custom

register block yes | no; default: no Allow custom register block

Get Parameters

Modbus parameters are held within registers. Each register contains 2 bytes of information. For
simplification, the number of registers for storing numbers is 2 (4 bytes), while the number of
registers for storing text information is 16 (32 bytes). The register numbers and corresponding
system values are described in the table below:

required value register address register number number of registers representation
System uptime 1 2 2 32 bit unsigned integer
Mobile signal strength (RSSI in dBm) 3 4 2 32 bit integer
System temperature (in 0.1 °C) 5 6 2 32 bit integer
System hostname 7 8 16 Text
GSM operator name 23 24 16 Text
Router serial number 39 40 16 Text
LAN MAC address 55 56 16 Text
Router name 71 72 16 Text
Currently active SIM card slot 87 88 16 Text
Network registration info 103 104 16 Text
Network type 119 120 16 Text
Digital input (DIN1) state 135 136 2 32 bit integer
Digital galvanically isolated input (DIN2) state 137 138 2 32 bit integer
Current WAN IP address 139 140 2 32 bit unsigned integer
Analog input value 141 142 2 32 bit integer
GPS latitude coordinate 143 144 2 32 bit float
GPS longitude coordinate 145 146 2 32 bit float
GPS fix time 147 148 16 Text (Unix timestampx1000)
GPS date and time 163 164 16 Text (DDMMYYhhmmss)
GPS speed 179 180 2 32 bit integer
GPS satellite count 181 182 2 32 bit integer
GPS accuracy 183 184 2 32 bit float

http://wiki.teltonika-networks.com/index.php?title=File:Networking_rut_manual_modbus_modbus_tcp.png&filetimestamp=20201120082355&
http://wiki.teltonika-networks.com/view/RSSI

Mobile data received today (SIM1) 185 186 2 32 bit unsigned integer
Mobile data sent today (SIM1) 187 188 2 32 bit unsigned integer
Mobile data received this week (SIM1) 189 190 2 32 bit unsigned integer
Mobile data sent this week (SIM1) 191 192 2 32 bit unsigned integer
Mobile data received this month (SIM1) 193 194 2 32 bit unsigned integer
Mobile data sent this month (SIM1) 195 196 2 32 bit unsigned integer
Mobile data received last 24h (SIM1) 197 198 2 32 bit unsigned integer
Mobile data sent last 24h (SIM1) 199 200 2 32 bit unsigned integer
Galvanically isolated open collector output status 201 202 1 16 bit unsigned integer
Relay output status 202 203 1 16 bit unsigned integer
Active SIM card 205 206 1 16 bit unsigned integer
Mobile data received last week (SIM1) 292 293 2 32 bit unsigned integer
Mobile data sent last week (SIM1) 294 295 2 32 bit unsigned integer
Mobile data received last month (SIM1) 296 297 2 32 bit unsigned integer
Mobile data sent last month (SIM1) 298 299 2 32 bit unsigned integer
Mobile data received today (SIM2) 300 301 2 32 bit unsigned integer
Mobile data sent today (SIM2) 302 303 2 32 bit unsigned integer
Mobile data received this week (SIM2) 304 305 2 32 bit unsigned integer
Mobile data sent this week (SIM2) 306 307 2 32 bit unsigned integer
Mobile data received this month (SIM2) 308 309 2 32 bit unsigned integer
Mobile data sent this month (SIM2) 310 311 2 32 bit unsigned integer
Mobile data received last 24h (SIM2) 312 313 2 32 bit unsigned integer
Mobile data sent last 24h (SIM2) 314 315 2 32 bit unsigned integer
Mobile data received last week (SIM2) 316 317 2 32 bit unsigned integer
Mobile data sent last week (SIM2) 318 319 2 32 bit unsigned integer
Mobile data received last month(SIM2) 320 321 2 32 bit unsigned integer
Mobile data sent last month (SIM2) 322 323 2 32 bit unsigned integer
Digital non-isolated input (4 PIN connector) 324 325 1 16 bit unsigned integer
Digital open collector output (4 PIN connector) 325 326 1 16 bit unsigned integer
IMSI 348 349 16 Text

Set Parameters

The Modbus daemon can also set some device parameters. These parameters and explanations on
how to use them are described in the table below:

value to set register address register number register value description
Hostname 7 8 Hostname Changes hostname
Device name 71 72 Device name Changes device name
Digital output 1 (DOUT1) (ON/OFF*) 201 202 110 Changes the state of the open collector (OC) output
Digital output 2 (DOUT2) (ON/OFF*) 202 203 110 Changes the state of the relay output
Switch WiFi (ON/OFF*) 203 204 110 Turns WiFi ON or OFF
Switch mobile data connection (ON/OFF*) 204 205 110 Turns mobile data connection ON or OFF

Changes the active SIM card slot
* 1 - switch to SIM1
Switch SIM card 205 206 11210 * 2 - switch to SIM2
* 0 - switch from the the SIM card opposite of the one currently in
use (SIM1 - SIM2 or SIM2 - SIM1
Reboot 206 207 1 Reboots the router
Changes APN.
The number of input registers may vary depending on the length of
the APN, but the very first byte of the set APN command denotes
Change APN 207 208 APN code the number of the SIM card for which to set the APN. This byte
should be set to:
* 1 -toset APN for SIM1
* 2 - to set APN for SIM2

Switch PIN4 state (ON/OFF*) 325 326 110 Turns PIN4 state ON or OFF
* All ON/OFF commands only accept 0 and 1 values, which represent the following:

e 1-ON
e 0-OFF

Modbus TCP Master

A Modbus master device can request data from Modbus slaves. The Modbus TCP Master section is
used to configure Modbus TCP slaves. You can create a maximum of 10 slave configurations.

Slave device configuration

The figure below is an example of the Slave device configuration and the table below provides
information on the fields contained in that section:

(]
Field Value Description
Enabled yes | no; default: no Turns communication with the slave device on or off.
Name string; default: none Slave device's name, used for easier management purposes.
Slave ID. Each slave in a network is assigned a unique
.) _ identifier ranging from 1 to 255. When the master requests
Slave ID iﬁi%er [0..255]; default: data from a slave, the first byte it sends is the Slave ID.
When set to 0, the slave will respond to requests addressed
to any ID.
IP address ip; default: none Slave device's IP address.
Port integer [0..65535]; default: Slave device's Modbus TCP port.
none
Period 16néeger [1..6400]; default: Interval at which requests are sent to the slave device.

Timeout integer [1..30]; default: 5 Maximum response wait time.

Requests configuration

A Modbus request is a way of obtaining data from Modbus slaves. The master sends a request to a
slave specifying the function code to be performed. The slave then sends the requested data back to
the Modbus master. You can create a maximum of 64 request configurations for each slave device.

Note: Modbus TCP Master uses Register Number instead of Register Address for pointing to a
register. For example, to request the Uptime of a device, you must use 2 in the First Register field.

The figure below is an example of the Requests configuration section and the table below provides
information contained in the fields of that section:

]

Field Value Description

string; default: Unnamed Request name. Used for easier management
Parameter purposes.

Hex | Ascii | 8bit INT | 8bit UINT |
16bit INT, high byte first | 16bit INT,
low byte first | 16bit UINT, high byte
first | 16bit UINT, low byte first |
Data type 32bit float, Byte order 1,2,3,4 | 32bit How read data will be stored.
float, Byte order 4,3,2,1 | 32bit float,
Byte order 2,1,4,3 | 32bit float, Byte
order 3,4,1,2; default: 16bit INT,
high byte first

Name

http://wiki.teltonika-networks.com/index.php?title=File:Networking_rut_manual_modbus_modbus_tcp_master_slave_device_configuration.png&filetimestamp=20201120082358&
http://wiki.teltonika-networks.com/index.php?title=File:Networking_rut_manual_modbus_modbus_tcp_master_request_configuration.png&filetimestamp=20201120082727&

Function

First Register integer [1..65536]; default: 1

gun}ber of integer [1..2000]; default: none
egisters

Enabled yes | no; default: no

Test - (interactive button)

Delete - (interactive button)

Add - (interactive button)

Alarm configuration

112[3|4]5]6]15] 16; default: 3

A function code specifies the type of register
being addressed by a Modbus request. The
codes represent these functions:

* 1 - read Coil Status

- read Input Status

- read Holding Registers

- read Input Registers

- force Single Coil

- preset Single Register

* 15 - force Multiple Coils

* 16 - force Multiple Registers

e o o o o
QU= WN

First Modbus register number from which
data will be read.

Note - RUT9XX Modbus Master uses register
numbers, which value is +1 higher than
address value.

Number of Modbus registers that will be read
during the request.

Turns the request on or off.

Generates a Modbus request according to
given parameters in order to test the request
configuration. You must first save the
configuration before you can use the Test
button.

Deletes the request.
Adds a new request configuration.

Alarms are a way of setting up automated actions when some Modbus values meet user specified
conditions. The figure below is an example of the Alarm configuration page and the table below

provides information on fields that it contains:

]

Field Value
Enabled yes | no; default: no

Read Coil Status (1) | Read Input
Status (2) | Read Holding Registers
(3) | Read Input Registers (4);
default: Read Coil Status (1)

Function code

Register integer [0..65535]; default: none
Condition More than | Less than | Equal to |

Not Equal to; default: Equal to
Value various; default: none

Description
Turns the alarm on or off

Modbus function used in Modbus request.

Number of the Modbus coil/input/holding
register/input register that will be read.

When a value is obtained it will be
compared against the value specified in
the following field. The comparison will be
made in accordance with the condition
specified in this field.

The value against which the read data will
be compared.

http://wiki.teltonika-networks.com/index.php?title=File:Networking_rut_manual_modbus_modbus_tcp_master_alarm_configuration.png&filetimestamp=20201120083050&

Action

SMS: Message

SMS: Phone
number

Trigger output:
Output

Trigger output: I/O

Action

Modbus Request:
[P address
Modbus Request:
Port

Modbus Request:
Timeout

Modbus Request:
ID

Modbus Request:

Modbus function

Modbus Request:

First register

Modbus Request:

Number of
registers

SMS | Trigger output | Modbus
Request; default: SMS

string; default: none
phone number; default: none

Open collector output | Relay output
| Both; default: Open collector
output

Turn On | Turn Off | Invert; default:
Turn On

ip | host; default: none
integer [0..65535]; default: none
integer [1..30]; default: 5

integer [1..255]; default: none

Read Coil Status (1) | Read Input
Status (2) | Read Holding Registers
(3) | Read Input Registers (4) |
Force Single Coil (5) | Preset Single
Register (6) | Force Multiple Coils
(15) | Force Multiple Registers (16);
default: Force Single Coil (5)

integer [0..65535]; default: none

integer [0..65535]; default: none

Modbus Serial Master

Action that will be taken if the condition is
met. Possible actions:

* SMS - sends and SMS message to a
specified recipient(s).

* Trigger output - changes the state of a
specified output(s).

* Modbus Request - sends a Modbus
request to a specified slave.

SMS message text.

Recipient's phone number.

Which output(s) will be triggered.

Action that will taken on the specified
output.

Modbus slave's IP address.
Modbus slave's port.
Maximum time to wait for a response.

Modbus slave ID.

A function code specifies the type of
register being addressed by a Modbus
request.

Begins reading from the register specified
in this field.

The number of registers that will be read
from the first register.

The Modbus Serial Master page is used to configure the router as a Modbus RTU master. Modbus
RTU (remote terminal unit) is a serial communication protocol mainly used in communication via
RS232 or RS485 serial interfaces.

RS232

This section is used to configure the Modbus RTU master's RS232 serial interface settings. Refer to
the figure and table below for information on RS232 configuration.

(=]

http://wiki.teltonika-networks.com/index.php?title=File:Networking_rut_manual_modbus_modbus_serial_master_rs232.png&filetimestamp=20201120090336&

Field
Enabled

Baud rate

Data bits

Parity

Stop bits

Flow
control

RS485

Value

yes | no; default:
no

300 | 1200 | 2400
| 4800 | 9600 |
19200 | 38400 |
57600 | 115200;
default: 115200
5|6|7]8;
default: 8

None | Even |
0dd; default:
Even

1| 2; default: 1

None | RTS/CTS |
Xon/Xoff; default:
None

Description

Turns Modbus RTU via RS232 on or off.

Serial data transmission rate (in bits per second).

Number of data bits for each character.

In serial transmission, parity is a method of detecting errors. An
extra data bit is sent with each data character, arranged so that the
number of 1 bits in each character, including the parity bit, is always
odd or always even. If a byte is received with the wrong number of
1s, then it must have been corrupted. However, an even number of
errors can pass the parity check.

* None (N) - no parity method is used.

* Odd (O) - the parity bit is set so that the number of "logical ones
(1s)" has to be odd.

* Even (E) - the parity bit is set so that the number of "logical ones
(1s)" has to be even.

Stop bits sent at the end of every character allow the receiving signal
hardware to detect the end of a character and to resynchronise with
the character stream. Electronic devices usually use one stop bit.
Two stop bits are required if slow electromechanical devices are
used.

In many circumstances a transmitter might be able to send data
faster than the receiver is able to process it. To cope with this, serial
lines often incorporate a "handshaking" method, usually
distinguished between hardware and software handshaking.

* RTS/CTS - hardware handshaking. RTS and CTS are turned OFF
and ON from alternate ends to control data flow, for instance when a
buffer is almost full.

* Xon/Xoff - software handshaking. The Xon and Xoff characters are
sent by the receiver to the sender to control when the sender will
send data, i.e., these characters go in the opposite direction to the
data being sent. The circuit starts in the "sending allowed" state.
When the receiver's buffers approach capacity, the receiver sends
the Xoff character to tell the sender to stop sending data. Later, after
the receiver has emptied its buffers, it sends an Xon character to tell
the sender to resume transmission.

This section is used to configure the Modbus RTU master's RS485 serial interface settings. Refer to
the figure and table below for information on RS485 configuration.

(]

Field

Value

Description

http://wiki.teltonika-networks.com/index.php?title=File:Networking_rut_manual_modbus_modbus_serial_master_rs485.png&filetimestamp=20201120090258&

Enabled

Baud rate

Data bits

Parity

Stop bits

Flow
control

Slaves

yes | no; default:
no

300 | 1200 | 2400
| 4800 | 9600 |
19200 | 38400 |
57600 | 115200;
default: 115200
5/6]7]8;
default: 8

None | Even |
0dd; default:
Even

1] 2; default: 1

None | RTS/CTS |
Xon/Xoff; default:
None

Turns Modbus RTU via RS485 on or off.

Serial data transmission rate (in bits per second).

Number of data bits for each character.

In serial transmission, parity is a method of detecting errors. An
extra data bit is sent with each data character, arranged so that the
number of 1 bits in each character, including the parity bit, is always
odd or always even. If a byte is received with the wrong number of
1s, then it must have been corrupted. However, an even number of
errors can pass the parity check.

* None (N) - no parity method is used.

* Odd (O) - the parity bit is set so that the number of "logical ones
(1s)" has to be odd.

* Even (E) - the parity bit is set so that the number of "logical ones
(1s)" has to be even.

Stop bits sent at the end of every character allow the receiving signal
hardware to detect the end of a character and to resynchronise with
the character stream. Electronic devices usually use one stop bit.
Two stop bits are required if slow electromechanical devices are
used.

In many circumstances a transmitter might be able to send data
faster than the receiver is able to process it. To cope with this, serial
lines often incorporate a "handshaking" method, usually
distinguished between hardware and software handshaking.

* RTS/CTS - hardware handshaking. RTS and CTS are turned OFF
and ON from alternate ends to control data flow, for instance when a
buffer is almost full.

* Xon/Xoff - software handshaking. The Xon and Xoff characters are
sent by the receiver to the sender to control when the sender will
send data, i.e., these characters go in the opposite direction to the
data being sent. The circuit starts in the "sending allowed" state.
When the receiver's buffers approach capacity, the receiver sends
the Xoff character to tell the sender to stop sending data. Later, after
the receiver has emptied its buffers, it sends an Xon character to tell
the sender to resume transmission.

The Slaves section is used to configure new Modbus slave devices. A Modbus slave is an entity that
can be called upon by a Modbus master in order to obtain some type of information from it.

To create a new Modbus slave, enter a custom name for it and click the 'Add' button. Then click the
'Edit’ button next to the slave in order to enter its configuration window.

Slave settings

The Settings section is used to configure the main parameters of the Modbus slave. Refer to the
figure and table below for additional information.

=]
Field Value Description
Enabled yes | no; default: no Turns the slave on or off.
Slave ID. Each slave in a network is assigned a unique
Slave ID integer [1..255]; identifier ranging from 1 to 255. When the master

default: 1

Frequency settings Period | Schedule;
period default: Period

integer [1..9999]/;

Period/Schedule default: 10

Slave requests

requests data from a slave, the first byte it sends is the
Slave ID.

Specifies whether request frequency should happen
every x amount of seconds (Period) or on a set
schedule (Schedule).

Interval (in minutes) at which requests are sent to the
slave device. Or Shedule (crontab-like, three fields
(HH MM SS); e.g.. 0,12 * %),

A Modbus request is a way of obtaining data from Modbus slaves. The master sends a request to a
slave specifying the function code to be performed. The slave then sends the requested data back to

the Modbus master.

Note: Modbus Serial Master uses Register Number instead of Register Address for pointing to a
register. For example, to request the Uptime of a device, you must use 2 in the First Register field.

The figure below is an example of the Requests configuration section and the table below provides
information contained in the fields of that section:

(]
Field Value Description
Enabled yes | no; default: no Turns the request on or off.
Read Coil | Read Discrete Input | Read
Function Holding Registers | Read Input Modbus function used in Modbus
Registers; default: Read Holding request.
Registers

First Register integer [1..65536]; default: 1

Number of
Registers

Slave alarms

integer [1..2000]; default: none

First Modbus register from which data
will be read.

Number of Modbus registers that will be
read during the request/

Alarms are a way of setting up automated actions when some Modbus values meet user specified

http://wiki.teltonika-networks.com/index.php?title=File:Networking_rut_manual_modbus_modbus_serial_master_slave_device_configuration.png&filetimestamp=20210604062121&
http://wiki.teltonika-networks.com/index.php?title=File:Networking_rut_manual_modbus_modbus_serial_master_request_configuration.png&filetimestamp=20201120090310&

conditions. The figure below is an example of the Alarm configuration page and the table below
provides information on fields that it contains:

(]

Field
Enabled yes | no; default: no

Read Coil | Read Discrete Input |
Read Holding Registers | Read
Input Registers; default: Read
Holding Registers

Value

Function

Register integer [1..65536]; default: 1

More than | Less than | Equal to |

Condition ¢\ equal to; default: More than

Value integer [0..65535]; default: 0

SMS | Trigger output | Modbus

Action request; default: SMS

Modbus Data to Server

Description
Turns the alarm on or off.

Modbus function used in Modbus request.

Number of the Modbus coil/input/holding
register/input register that will be read.

When a value is obtained it will be compared against
the value specified in the following field. The
comparison will be made in accordance with the
condition specified in this field.

The value against which the read data will be
compared.

Action that will be taken if the condition is met.
Possible actions:

* SMS - sends and SMS message to a specified
recipient(s).

* Trigger output - changes the state of a specified
output(s).

* Modbus Request - sends a Modbus request to a
specified slave.

The Modbus Data to Server function provides you with the possibility to set up senders that
transfer data collected from Modbus slaves to remote servers. To add a new data sender, enter the
server's address, specify the data sending period and click the "Add" button:

=]

Data sender configuration

When you add a new data sender, you will be redirected to its configuration window. The figure
below is an example of that window and the table below provides information on the fields that it

contains:
(]

Field Value
Enabled yes | no; Default: no
Name string; Default: none
Protocol

HTTP(S) | MQTT; Default: HTTP(S)

Description

Turns the data sender ON or
OFF

Data sender's name. used for
easier management purposes

Data sending protocol

http://wiki.teltonika-networks.com/index.php?title=File:Networking_rut_manual_modbus_modbus_serial_master_alarm_configuration.png&filetimestamp=20201120090247&
http://wiki.teltonika-networks.com/index.php?title=File:Networking_rut_manual_modbus_modbus_data_to_server_new_modbus_data_sender.png&filetimestamp=20190401123701&
http://wiki.teltonika-networks.com/index.php?title=File:Networking_rut_manual_modbus_modbus_data_to_server_data_sender_configuration.png&filetimestamp=20201120083827&

JSON format json string; Default: {"ID":"%i",

Segmentcount 1|2|3]|4|5|6|7]|8]|9]|10]All Default: 1

URL / Host /

Connection host | ip; Default: none

string

Period integer [1..6400]; Default: none

HTTP(S): Data All data | By slave ID | By slave IP; Default: All

filtering data

HTTP(S): Retry

on fail yes | no; Default: no

HTTP(S): Custom
header

MQTT: Port integer [0..65535]; Default: none

string; Default: no

MQTT: Keepalive integer [1..640]; Default: none

MQTT: Topic string; Default: none

MQTT: QoS 0]1|2; Default: 0

MQTT: Use TLS yes | no; Default: no

MQTT Gateway

IITSII:II%tII’ "ST":"%S"'"VR":"%a"}

Provides the possibility to fully
customize the JSON segment

Max segment count in one JSON
string sent to server.

Address of the server to which
the data will be sent.
Important note: when using
HTTPS, remember to add the
https:// prefix before the URL.

Data sending frequency (in
seconds)

Which data this sender will
transfer to the server

Specifies whether the data
sender should retry failed
attempts

Adds a custom header(s) to HTTP
requests

Port used to connect to host.

MQTT keepalive period in
seconds.

Write topic to which your data
will be sent.

This field defines the guarantee
of delivery for specific message.
Possible values are:

* At most once (0)

* At least once (1)

* Exactly once (2)

Turns TLS authentication on or
off.

The MQTT Gateway function is used to transfer Modbus data (send requests, receive responses)
over MQTT. When it is enabled, the device (this RUT955) subscribes to a REQUEST topic and
publishes on a RESPONSE topic on a specified MQTT broker. It translates received MQTT message
payload to a Modbus request and relays it to the specified Modbus TCP slave.

When the MQTT Gateway receives a response from the slave, it translates it to an MQTT message

and publishes it on the RESPONSE topic.
(]

Below is an example of the MQTT Gateway page. Refer to the table for information on MQTT

Gateway configuration fields.

(]

Field Value
Enable off | on; default: off

Description

Turns MQTT gateway on or off.

http://wiki.teltonika-networks.com/index.php?title=File:Networking_rutos_manual_modbus_mqtt_gateway_scheme.png&filetimestamp=20200902111737&
http://wiki.teltonika-networks.com/index.php?title=File:Networking_rut_manual_modbus_mqtt_gateway.png&filetimestamp=20200915093501&

Host ip | host; default: 127.0.0.1 IP address or hostname of an MQTT broker.

integer [0..65535]; default:
1883

Request topic string; default: request MQTT topic for sending requests.

Port Port number of the MQTT broker.

Response topic string; default: response MQTT topic for subscribing to responses.

Username for authentication to the MQTT broker.
Leave empty if you do not use client authentication.

Password for authentication to the MQTT broker.
Leave empty if you do not use client authentication.

Username string; default: none

Password string; default: none

Request messages

Note: MQTT Gateway uses Register Number instead of Register Address for pointing to a register.
For example, to request the Uptime of a device, you must use 2 in the Register Number field.

Modbus request data sent in the MQTT payload should be generated in accordance with the
following format:

0 <COOKIE> <IP_TYPE> <IP> <PORT> <TIMEOUT> <SLAVE_ID> <MODBUS_ FUNCTION>
<REGISTER_NUMBER> <REGISTER_COUNT/VALUE>

Explanation:

o 0 - must be 0, which signifies a textual format (currently the only one implemented).

o Cookie - a 64-bit unsigned integer in range [0..2*]). A cookie is used in order to distinguish
which response belongs to which request, each request and the corresponding response
contain a matching cookie: a 64-bit unsigned integer.

o IP type - host IP address type. Possible values:

= 0 - IPv4 address;
» 1 - IPv6 address;
= 2 - hostname that will be resolved to an IP address.

o IP - IP address of a Modbus TCP slave. IPv6 must be presented in full form (e.g.,
2001:0db8:0000:0000:0000:8a2e:0370:7334).

o Port - port number of the Modbus TCP slave.

o Timeout - timeoutfor Modbus TCP connection, in seconds. Range [1..999].

o Slave ID - Modbus TCP slave ID. Range [1..255].

o Modbus function - Only these are supported at the moment:

* 3 - read holding registers;
» 6 - write to a single holding register;
= 16 - write to multiple holding registers.

o Register number - number of the first register (in range [1..65536]) from which the registers
will be read/written to.

o Register count/value - this value depends on the Modbus function:

= 3 - register count (in range [1..125]); must not exceed the boundary (first register
number + register count <= 65537);

» 6 - register value (in range [0..65535]);

» 16 - register count (in range [1..123]); must not exceed the boundary (first register
number + register count <= 65537); and register values separated with commas,
without spaces (e.g., 1,2,3,654,21,789); there must be exactly as many values as

specified (with register count); each value must be in the range of [0..65535].

Response messages

A special response message can take one of the following forms:

<COOKIE> OK - for functions 6 and 16
<COOKIE> OK <VALUE> <VALUE> <VALUE>... - for function 3, where <VALUE>
<VALUE> <VALUE>... are read register values

<COOKIE> ERROR: ... - for failures, where ... 1is the

error description

Examples

Below are a few examples of controlling/monitoring the internal Modbus TCP Slave on RUT955.

Reboot the device

o Request:
0 65432 0 192.168.1.1 502 5 1 6 206 1
o Response:

65432 OK

Retrieve uptime

o Request:
0 65432 0 192.168.1.1 502 51 3 2 2
o Response:

65432 0K 0 5590

If you're using Eclipse Mosquitto (MQTT implementation used on RUT955), Publish/Subscribe
commands may look something like this:

Retrieve uptime

o Request:

mosquitto pub -h 192.168.1.1 -p 1883 -t request -m "0 65432 0

192.168.1.1 502 5 1 3 2 2"
o Response:

mosquitto sub -h 192.168.1.1 -p 1883 -t response
65432 OK 0 5590

See also

o Monitoring via Modbus - detailed examples on how to use Modbus TCP

http://wiki.teltonika-networks.com/view/RUT955_Monitoring_via_Modbus

