
https://wiki.teltonika-networks.com/view/RUT956_Modbus

RUT956 Modbus
Main Page > RUT Routers > RUT956 > RUT956 Manual > RUT956 WebUI > RUT956 Services section > RUT956
Modbus

The information in this page is updated in accordance with firmware version
RUT9M_R_00.07.07.1.

Contents

1 Summary
2 Modbus TCP Server
3 Modbus Serial Server

3.1 Modbus Serial Server Configuration
4 Modbus Registers

4.1 Get Parameters
4.2 Set Parameters

5 Modbus TCP Client
5.1 Server Device Configuration
5.2 Requests Configuration
5.3 Alarms Configuration

6 Modbus Serial Client
6.1 Modbus Serial Device Configuration

6.1.1 RS Device Modbus Client Configuration
6.2 Modbus Server Device Configuration

6.2.1 Server Device Configuration
6.2.1.1 Requests Configuration
6.2.1.2 Modbus Client Alarms

7 MQTT Modbus Gateway
7.1 Serial Gateway Configuration
7.2 Request messages
7.3 Response messages
7.4 Examples

8 Modbus TCP over Serial Gateway
8.1 Modbus TCP over Serial Gateway Configuration
8.2 IP Filter

9 See also

Summary
Modbus is a serial communications protocol. Simple and robust, it has become a de facto standard
communication protocol and is now a commonly available means of connecting industrial electronic
devices.

https://wiki.teltonika-networks.com/view/Main_Page
https://wiki.teltonika-networks.com/view/RUT_Routers
https://wiki.teltonika-networks.com/view/RUT956
https://wiki.teltonika-networks.com/view/RUT956_Manual
https://wiki.teltonika-networks.com/view/RUT956_WebUI
https://wiki.teltonika-networks.com/view/RUT956_Services_section
https://firmware.teltonika-networks.com/7.7.1/RUT9M/RUT9M_R_00.07.07.1_WEBUI.bin

This manual page provides an overview of the Modbus functionality in RUT956 devices.

If you're having trouble finding this page or some of the parameters described here on your device's
WebUI, you should turn on "Advanced WebUI" mode. You can do that by clicking the "Advanced"
button, located at the top of the WebUI.

Modbus TCP Server
A Modbus TCP Server listens for connections from a TCP Client (client) and sends out a response
or sets some system related parameter in accordance with the given query. This provides the user
with the possibility to set or get system parameters.

The figure below is an example of the Modbus TCP window section and the table below provides
information on the fields contained in that window:

Field Value Description
Enable off | on; default: off Turns Modbus TCP on or off.

Port integer [0..65535];
default: 502 TCP port used for Modbus communications.

Device ID integer [0..255]; default: 1 The device's Modbus server ID. When set to 0, it will
respond to requests addressed to any ID.

Mobile Data type Bytes | Kilobytes |
Megabytes; default: Bytes Selects mobile data unit representation type.

Allow remote
access off | on; default: off

Allows remote Modbus connections by adding an
exception to the device's firewall on the port
specified in the field above.

Keep persistent
connection off | on; default: onn Allows keep the connection open after responding a

Modbus TCP client request.
Connection
timeout integer [0..60]; default: 0 Sets TCP timeout in seconds after which the

connection is forcefully closed.
Enable custom
register block off | on; default: off Allows the usage of custom register block.

Register file path path; default:
/tmp/regfile

Path to file in which the custom register block will
be stored. Files inside /tmp or /var are stored in
RAM. They vanish after reboot, but do not degrade
flash memory. Files elsewhere are stored in flash
memory. They remain after reboot, but degrade
flash memory (severely, if operations are frequent).

First register
number

integer [1025..65536];
default: 1025 First register in custom register block

Register count integer [1..64512];
default: 128 Register count in custom register block

Modbus Serial Server
A Modbus Serial Server listens for connections from a serial client and sends out a response or
sets some system related parameter in accordance with the given query. This provides the user with

http://wiki.teltonika-networks.com/index.php?title=File:Networking_rutos_manual_webui_basic_advanced_mode_75.gif&filetimestamp=20231010122606&
http://wiki.teltonika-networks.com/index.php?title=File:Networking_rutos_manual_modbus_modbus_tcp_server.png&filetimestamp=20230922100622&

the possibility to set or get system parameters.

Modbus Serial Server Configuration

The Modbus Serial Server Configuration section is used to configure serial servers. By default,
the list is empty. To add a new server instance, enter the instance name, select serial interface and
click the 'Add' button.

After clicking 'Add' you will be redirected to the newly added server instance configuration page.

Field Value Description
Enable off | on; default: off Enables this Modbus Serial Server instance configuration.

Name string; default: none Name of the serial server instance. Used for management
purposes only.

Device
RS232 | RS485 | USB
RS232 interface; default:
RS232

Specifies which serial port will be used for serial
communication.

Device ID integer [0..255]; default:
1

Specifies which serial port will be used for serial
communication.

Mobile Data
type

Bytes | Kilobytes |
Megabytes; default:
Bytes

Selects mobile data unit representation type.

Baud rate

300 | 1200 | 2400 | 4800
| 9600 | 19200 | 38400 |
57600 | 115200| 230400
| 460800 | 921600 |
1000000 | 3000000;
default: 9600

Serial data transmission rate (in bits per second).

Data bits 5 | 6 | 7 |8; default: 8 Number of data bits for each character.

Stop bits 1| 2; default: 1

Stop bits sent at the end of every character allow the
receiving signal hardware to detect the end of a character
and to resynchronise with the character stream. Electronic
devices usually use one stop bit. Two stop bits are required
if slow electromechanical devices are used.

http://wiki.teltonika-networks.com/index.php?title=File:Networking_rutos_manual_modbus_modbus_serial_server_add_button_rs232_1_v1.png&filetimestamp=20230922103144&
http://wiki.teltonika-networks.com/index.php?title=File:Networking_rutos_manual_modbus_modbus_serial_server_configuration_rs232_1_v2.png&filetimestamp=20240416144211&

Parity
Even | Odd| Mark |
Space | None; default:
None

In serial transmission, parity is a method of detecting errors.
An extra data bit is sent with each data character, arranged
so that the number of 1 bits in each character, including the
parity bit, is always odd or always even. If a byte is received
with the wrong number of 1s, then it must have been
corrupted. However, an even number of errors can pass the
parity check.
• None (N) - no parity method is used.
• Odd (O) - the parity bit is set so that the number of
"logical ones (1s)" has to be odd.
• Even (E) - the parity bit is set so that the number of
"logical ones (1s)" has to be even.
• Space (s) - the parity bit will always be a binary 0.
• Mark (M) - the parity bit will always be a binary 1.

Flow
control

None | RTS/CTS |
Xon/Xoff; default: None

In many circumstances a transmitter might be able to send
data faster than the receiver is able to process it. To cope
with this, serial lines often incorporate a "handshaking"
method, usually distinguished between hardware and
software handshaking.
• RTS/CTS - hardware handshaking. RTS and CTS are
turned OFF and ON from alternate ends to control data
flow, for instance when a buffer is almost full.
• Xon/Xoff - software handshaking. The Xon and Xoff
characters are sent by the receiver to the sender to control
when the sender will send data, i.e., these characters go in
the opposite direction to the data being sent. The circuit
starts in the "sending allowed" state. When the receiver's
buffers approach capacity, the receiver sends the Xoff
character to tell the sender to stop sending data. Later, after
the receiver has emptied its buffers, it sends an Xon
character to tell the sender to resume transmission.

RS485: Full
Duplex off | on; default: off Enables RS485 full duplex.

Enable
custom
register
block

off | on; default: off Allows the usage of custom register block.

Register file
path

path; default:
/tmp/regfile

Path to file in which the custom register block will be
stored. Files inside /tmp or /var are stored in RAM. They
vanish after reboot, but do not degrade flash memory. Files
elsewhere are stored in flash memory. They remain after
reboot, but degrade flash memory (severely, if operations
are frequent).

First
register
number

integer [1025..65536];
default: 1025 First register in custom register block

Register
count

integer [1..64512];
default: 128

Path to file in which the custom register block will be
stored. Files inside /tmp or /var are stored in RAM. They
vanish after reboot, but do not degrade flash memory. Files
elsewhere are stored in flash memory. They remain after
reboot, but degrade flash memory (severely, if operations
are frequent).

Modbus Registers

Get Parameters

Modbus parameters are held within registers. Each register contains 2 bytes of information. For
simplification, the number of registers for storing numbers is 2 (4 bytes), while the number of
registers for storing text information is 16 (32 bytes).

The register numbers and corresponding system values are described in the table below:

required value register address register number number of registers representation
System uptime 1 2 2 32 bit unsigned integer
Mobile signal strength (RSSI in dBm) 3 4 2 32 bit integer
System temperature (in 0.1 °C) 5 6 2 32 bit integer
System hostname 7 8 16 Text
GSM operator name 23 24 16 Text
Router serial number 39 40 16 Text
LAN MAC address 55 56 16 Text
Router name 71 72 16 Text
Currently active SIM card slot 87 88 16 Text
Network registration info 103 104 16 Text
Network type 119 120 16 Text
Digital input (DIN1) state 135 136 2 32 bit integer
Digital galvanically isolated input (DIN2) state 137 138 2 32 bit integer
Current WAN IP address 139 140 2 8 bit unsigned integer
Analog input (PIN 9) value 141 142 2 32 bit unsigned integer
GPS latitude coordinate 143 144 2 32 bit float
GPS longitude coordinate 145 146 2 32 bit float

GPS fix time 147 148 16 Text (YYYY-MM-DD
hh:mm:ss)

GPS date and time 163 164 16 Text (YYYY-MM-DD
hh:mm:ss)

GPS speed 179 180 2 32 bit float
GPS satellite count 181 182 2 32 bit unsigned integer
GPS accuracy 183 184 2 32 bit float
Mobile data received today (SIM1) 185 186 2 32 bit unsigned integer
Mobile data sent today (SIM1) 187 188 2 32 bit unsigned integer
Mobile data received this week (SIM1) 189 190 2 32 bit unsigned integer
Mobile data sent this week (SIM1) 191 192 2 32 bit unsigned integer
Mobile data received this month (SIM1) 193 194 2 32 bit unsigned integer
Mobile data sent this month (SIM1) 195 196 2 32 bit unsigned integer
Mobile data received last 24h (SIM1) 197 198 2 32 bit unsigned integer
Mobile data sent last 24h (SIM1) 199 200 2 32 bit unsigned integer
Galvanically isolated open collector output status 201 202 1 16 bit unsigned integer
Relay output status 202 203 1 16 bit unsigned integer
Active SIM card 205 206 1 16 bit unsigned integer
Mobile data received last 7 days (SIM1) 292 293 2 32 bit unsigned integer
Mobile data sent 7 days (SIM1) 294 295 2 32 bit unsigned integer
Mobile data received last 30 days (SIM1) 296 297 2 32 bit unsigned integer
Mobile data sent last 30 days (SIM1) 298 299 2 32 bit unsigned integer
Mobile data received today (SIM2) 300 301 2 32 bit unsigned integer
Mobile data sent today (SIM2) 302 303 2 32 bit unsigned integer
Mobile data received this week (SIM2) 304 305 2 32 bit unsigned integer
Mobile data sent this week (SIM2) 306 307 2 32 bit unsigned integer
Mobile data received this month (SIM2) 308 309 2 32 bit unsigned integer
Mobile data sent this month (SIM2) 310 311 2 32 bit unsigned integer
Mobile data received last 24h (SIM2) 312 313 2 32 bit unsigned integer
Mobile data sent last 24h (SIM2) 314 315 2 32 bit unsigned integer
Mobile data received 7 days (SIM2) 316 317 2 32 bit unsigned integer
Mobile data sent 7 days (SIM2) 318 319 2 32 bit unsigned integer
Mobile data received last 30 days (SIM2) 320 321 2 32 bit unsigned integer
Mobile data sent last 30 days (SIM2) 322 323 2 32 bit unsigned integer
Digital non-isolated input 324 325 1 16 bit unsigned integer
Digital open collector output 325 326 1 16 bit unsigned integer
Modem ID 328 329 8 Text
ACL activity 345 346 1 16 bit unsigned integer
ACL status 346 347 2 32 bit float
IMSI 348 349 16 Text
Unix timestamp 364 365 2 32 bit unsigned integer
Local ISO time 366 367 12 Text
UTC time 378 389 12 Text
LAN IP 394 395 2 8 bit unsigned integer
Add SMS 397 398 90 Text

http://wiki.teltonika-networks.com/view/RSSI

Set Parameters

The Modbus daemon can also set some device parameters.

value to set register address register number register value description

Hostname 7 8 Hostname (in
decimal form) Changes hostname

Device name 71 72 Device name (in
decimal form) Changes device name

Galvanically isolated open collector output
status 201 202 1 | 0 Toggles DOUT1 ON or OFF

Relay output status 202 203 1 | 0 Toggles DOUT2 ON or OFF
Switch WiFi ON/OFF 203 204 1 | 0 Turns WiFi ON or OFF
Switch mobile data connection (ON/OFF*) 204 205 1 | 0 Turns mobile data connection ON or OFF

Switch SIM card 205 206 1 | 2 | 0

Changes the active SIM card slot
• 1 - switch to SIM1
• 2 - switch to SIM2
• 0 - switch from the the SIM card opposite of the one currently in
use (SIM1 → SIM2 or SIM2 → SIM1)

Reboot 206 207 1 Reboots the router

Change APN 207 208 APN code

Changes APN.
The number of input registers may vary depending on the length of
the APN, but the very first byte of the set APN command denotes
the number of the SIM card for which to set the APN. This byte
should be set to:
• 1 - to set APN for SIM1
• 2 - to set APN for SIM2

Switch PIN 4 state 325 326 1|0 Toggles PIN 4 ON or OFF
Switch ACL activity 345 346 1|0 Turns ACL activity ON or OFF
Switch 2.4GHz WiFi ON/OFF 390 391 1 | 0 Turns 2.4GHz WiFi ON or OFF

Change LAN IP 394 395 IPv4 (in decimal
form) Changes device LAN IP

Send SMS 396 397 1|0 Sends an SMS with content defined in Add SMS (397) register

Add SMS 397 398 Message (in decimal
form)

Define SMS content which will be sent using Send SMS (396)
register.
The register array is split into two parts that represent the
recipient's "phone number" (first 10 registers) and the "SMS
message contents" (remaining 80 registers).

Modbus TCP Client
A Modbus Client device can request data from Modbus servers. The Modbus TCP Client section is
used to configure Modbus TCP servers and enable Client.

Notice the Global section config. It is used to outright turn the service off or on if any active
configurations are present.

Clicking the Cog icon opens a modal window. The global configuration slider can be set and it's state
saved.

By default, the server list is empty and client is disabled. To add a new server, click the 'Add' button

After clicking 'Add' you will be redirected to the newly added server's configuration page.

Server Device Configuration

http://wiki.teltonika-networks.com/index.php?title=File:Networking_rutos_manual_modbus_modbus_tcp_client_modbus_tcp_server_devices_global_button_v1.png&filetimestamp=20240412100914&
http://wiki.teltonika-networks.com/index.php?title=File:Networking_rutos_manual_modbus_modbus_tcp_client_modbus_tcp_server_devices_global_config_modal_v1.png&filetimestamp=20240412104403&
http://wiki.teltonika-networks.com/index.php?title=File:Networking_rutos_manual_modbus_modbus_tcp_client_modbus_tcp_server_devices_add_button_v2.png&filetimestamp=20231219135108&

The Server Device Configuration section is used to configure the parameters of Modbus TCP
servers that the Client (this RUT956 device) will be querying with requests. The figure below is an
example of the Server Device Configuration and the table below provides information on the fields
contained in that section:

Field Value Description

Enabled off | on; default: off Turns communication with the server device on or
off.

Name string; default: none Server device's name, used for easier management
purposes.

Server ID integer [0..255]; default:
none

Server ID. Each server in a network is assigned a
unique identifier ranging from 1 to 255. When the
client requests data from a server, the first byte it
sends is the Server ID. When set to 0, the server will
respond to requests addressed to any ID.

IP address ip4; default: none Server device's IP address.

Port integer [0..65535]; default:
none Server device's Modbus TCP port.

Timeout integer [1..30]; default: 5 Maximum response wait time.
Always
reconnect off | on; default: off Create new connection after every Modbus request.

Number of
timeouts integer [0..10]; default: 1 Skip pending request and reset connection after

number of request failures.

Frequency Period | Schedule; default:
Period

Delay integer [0..999]; default: 0 Wait in milliseconds after connection initialization.

Period integer [1..99999]; default:
none

Interval in seconds for sending requests to this
device

Requests Configuration

A Modbus request is a way of obtaining data from Modbus servers. The client sends a request to a
server specifying the function code to be performed. The server then sends the requested data back
to the Modbus client.

Note: Modbus TCP Client uses Register Number instead of Register Address for pointing to a
register. For example, to request the Uptime of a device, you must use 2 in the First Register field.

The Request Configuration list is empty by default. To add a new Request Configuration loon to the
Add New Instance section. Enter a custom name into the 'Name' field and click the 'Add' button:

The new Request Configuration should become visible in the list:

Field Value Description

http://wiki.teltonika-networks.com/index.php?title=File:Networking_rutos_manual_modbus_modbus_tcp_client_server_device_configuration.png&filetimestamp=20230922105236&
http://wiki.teltonika-networks.com/index.php?title=File:Networking_rutos_manual_modbus_modbus_tcp_client_requests_configuration_add_new_instance.png&filetimestamp=20230922110246&
http://wiki.teltonika-networks.com/index.php?title=File:Networking_rutos_manual_modbus_modbus_tcp_master_requests_configuration_v1.png&filetimestamp=20221121133646&

Name string; default: Unnamed
Name of this Request
Configuration. Used for easier
management purposes.

Data type

8bit INT | 8bit UINT | 16bit INT, high byte first |
16bit INT, low byte first | 16bit UINT, high byte
first | 16bit UINT, low byte first | 32bit float
(various Byte order) | 32bit INT (various Byte
order) | 32bit UINT (various Byte order) | 64bit
INT (various Byte order) | 64bit UINT (various
Byte order) | 64bit float (various Byte order) |
ASCII | Hex | Bool | PDU; default: 16bit INT,
high byte first

Defines how read data will be
stored.

Function

Read coils (1) | Read input coils (2) | Read
holding registers (3) | Read input registers (4) |
Set single coil (5) | Set single coil register (6) |
Set multiple coils (15) | Set multiple holding
registers (16); default: Read holding registers
(3)

Specifies the type of register being
addressed by a Modbus request.

First Register integer [0..65535]; default: 1 First Modbus register from which
data will be read.

Register
Count /
Values

integer [1..2000]; default: 1 Number of Modbus registers that
will be read during the request.

Remove
Brackets off | on; default: off

Removes the starting and ending
brackets from the request (only for
read requests).

off/on slider off | on; default: off Turns the request on or off.
Delete [X] - (interactive button) Deletes the request.

Additional note: by default the newly added Request Configurations are turned off. You can use the
on/off slider to the right of the Request Configuration to turn it on:

After having configured a request, you should see a new 'Request Configuration Testing' section
appear. It is used to check whether the configuration works correctly. Simply click the 'Test' button
and a response should appear in the box below. Note: to use test buttons, you need to enable Client
section. A successful response to a test may look something like this:

Alarms Configuration

Alarms are a way of setting up automated actions when some Modbus values meet user-defined
conditions. When the Modbus TCP Client (this RUT956 device) requests some information from a
server device it compares that data to with the parameters set in an Alarm Configuration. If the
comparison meets the specified condition (more than, less than, equal to, not equal to), the Client
performs a user-specified action, for example, a Modbus write request or switching the state of an

http://wiki.teltonika-networks.com/index.php?title=File:Networking_rutos_manual_modbus_modbus_tcp_client_requests_configuration_on_off_slider.png&filetimestamp=20230922110631&
http://wiki.teltonika-networks.com/index.php?title=File:Networking_rutos_manual_modbus_modbus_tcp_master_requests_configuration_testing.png&filetimestamp=20200825101701&

output.

The figure below is an example of the Alarms Configuration list. To create a new Alarm, click the
'Add' button.

After adding the Alarm you should be redirected to its configuration page which should look similar
to this:

Field Value Description
Enabled off | on; default: off Turns the alarm on or off.

Function code

Read Coil Status (1) |
Read Input Status (2) |
Read Holding
Registers (3) | Read
Input Registers (4);
default: Read Coil
Status (1)

Modbus function used for this alarm's Modbus request.
The Modbus TCP Client (this RUT956 device) perform
this request as often as specified in the 'Period' field in
Server Device Configuration.

Compared
condition data
type

8bit INT | 8bit UINT |
16bit INT, high byte
first | 16bit INT, low
byte first | 16bit UINT,
high byte first | 16bit
UINT, low byte first |
32bit float (various
Byte order) | 32bit INT
(various Byte order) |
32bit UINT (various
Byte order) | 64bit INT
(various Byte order) |
64bit UINT (various
Byte order) | 64bit
float (various Byte
order) | ASCII | Hex |
Bool; default: 16bit
INT, high byte first

Select data type that will be used for checking conditions.

First register
number

integer [1..65536];
default: none

Number of the Modbus coil/input/holding-register/input-
register to read from.

Values various; default: none The value against which the read data will be compared.

Condition

More than | Less than
| Equal to | Not Equal
to | Less or equal |
More or equal; default:
More than

When a value is obtained it will be compared against the
value specified in the following field. The comparison will
be made in accordance with the condition specified in this
field.

Action frequency
Every trigger | First
trigger; default: Every
trigger

Describes how frequently the specified action will be
taken.

Redundancy
protection off | on; default: off Protection against executing a configured action too

often.

http://wiki.teltonika-networks.com/index.php?title=File:Networking_rutos_manual_modbus_modbus_tcp_client_alarms_configuration_add_button_v2.png&filetimestamp=20231219135423&
http://wiki.teltonika-networks.com/index.php?title=File:Networking_rutos_manual_modbus_modbus_tcp_master_alarms_configuration_v1.png&filetimestamp=20221121134754&

Redundancy
protection
period

integer [1..86400];
default: none

Duration to activate redundancy protection for, measured
in seconds. This field becomes visible only when
'Redundancy protection' is turned on.

Action

Ubus event | SMS |
MODBUS Write
Request| Trigger
output | MQTT
message; default:
MODBUS Write
Request

Action that will be taken if the condition is met. Possible
actions:
• SMS - sends and SMS message to a specified
recipient(s).
• Modbus Request - sends a Modbus Write request to a
specified server.
• Trigger output - changes state of selected I/O output
pin.

SMS: Message string; default: none SMS message text.
SMS: Phone
number

phone number;
default: none Recipient's phone number.

MODBUS Write
Request: IP
address

ip | host; default: none Modbus server's IP address.

MODBUS Write
Request: Port

integer [0..65535];
default: none Modbus server's port.

MODBUS Write
Request:
Timeout

integer [1..30];
default: 5 Maximum time to wait for a response.

MODBUS Write
Request: ID

integer [1..255];
default: none Modbus server ID.

MODBUS Write
Request:
Modbus function

Set Single Coil (5) |
Set Single Register (6)
| Set Multiple Coils
(15) | Set Multiple
Registers (16); default:
Set Single Coil (5)

A function code specifies the type of register being
addressed by a Modbus request.

MODBUS Write
Request:
Executed action
data type

8bit INT | 8bit UINT |
16bit INT, high byte
first | 16bit INT, low
byte first | 16bit UINT,
high byte first | 16bit
UINT, low byte first |
32bit float (various
Byte order) | 32bit INT
(various Byte order) |
32bit UNIT (various
Byte order) 64bit INT
(various Byte order) |
64bit UINT (various
Byte order) | 64bit
float (various Byte
order) | ASCII | Hex |
Bool; default: Bool

Select data type that will be used for executing action.

MODBUS Write
Request: First
register number

integer [0..65535];
default: none Begins reading from the register specified in this field.

MODBUS Write
Request: Values

integer [0..65535];
default: none

Register/Coil values to be written (multiple values must
be separated by space character).

Trigger output:
Output

Output (4) | Isolated
Output (3,4,8) | Relay
(5,10); default:
Output (4)

Selects which output will be triggered.

Trigger output:
I/O Action

Turn On | Turn Off |
Invert; default: Turn
On

Selects the action performed on the output.

MQTT message:
JSON format string; default: none

Below this field you can find special codes that begin with
the '%' sign. Each code represents a piece information
related to the status of the device. Include these codes in
the field for dynamic information reports. Possible values:
Local time, Unix time, Router name, Device name, Serial
number, Current FW version, LAN IP address, Monitoring
status, UTC time in ISO, WAN IP address, New line,
Modbus server ID, Modbus server IP, First register
number, Register value, Mobile IP addresses, Signal
strength, Operator name, Network type, Data connection
state, Network state, IMSI, IMEI, Modem model, Modem
serial number, SIM pin state, SIM state, RSCP, ECIO,
RSRP, SINR, RSRQ, ICCID, CELLID, Neighbour cells,
Network info, Network serving, WAN MAC address,
Analog Current Loop (6,9), Analog Input (6,9), Input (3),
Digital Input (1), Output (4), Isolated Output (3,4,8),
Isolated Input (2,7), Relay (5,10)

MQTT message:
Hostname host | ip; default: none Broker’s IP address or hostname.

MQTT message:
Port

integer [0..65535];
default: 1883 Broker's port number.

MQTT message:
Keepalive

positive integer;
default: none

The number of seconds after which the broker should
send a PING message to the client if no other messages
have been exchanged in that time

MQTT message:
Topic string; default: none The name of the topic that the broker will subscribe to.

MQTT message:
Client ID

positive integer;
default: none

Client ID to send with the data. If empty, a random client
ID will be generated

MQTT message:
QoS

At most once (0) | At
least once (1) | Exactly
once (2); default: At
most once (0)

A period of time (in seconds) which has to pass after a
trigger event before this Action is executed.

MQTT message:
Use root CA off | on; default: off Use root CA for verifying the servers certificates

MQTT message:
Use TLS off | on; default: off Turns the use of TLS/SSL for this MQTT connection on or

off.
MQTT message:
Use credentials off | on; default: off Turns the use of username and password for this MQTT

connection on or off.

Modbus Serial Client
The Modbus Serial Client page is used to configure the device as a Modbus RTU Client. Modbus
RTU (remote terminal unit) is a serial communication protocol mainly used in communication via
serial interfaces.

Notice the Global section config. It is used to outright turn the service off or on if any active
configurations are present.

Clicking the Cog icon opens a modal window. The global configuration slider can be set and it's state
saved.

Modbus Serial Device Configuration

This section is used to create Modbus Serial Client's server device instances. You may create a
Serial Device instance for each supported serial interface.

By default there are no instances created. To add a new serial device configuration, enter an
instance name and click the 'Add' button.

After clicking 'Add' you will be redirected to the newly added device's configuration page.

RS Device Modbus Client Configuration

This section is used to configure the Modbus Serial Client's server device interface settings.

Field Value Description
Enable off | on; default: off Enables this Modbus Serial Device instance configuration.

Name string; default: none Name of the serial device instance. Used for management
purposes only.

Device
RS232 | RS485 | USB
RS232 interface;
default: RS232

Specifies which serial port will be used for serial communication.

Baud rate

300 | 1200 | 2400 |
4800 | 9600 | 19200 |
38400 | 57600 |
115200| 230400 |
460800 | 921600 |
1000000 | 3000000;
default: 9600

Serial data transmission rate (in bits per second).

Data bits 5 | 6 | 7 |8; default: 8 Number of data bits for each character.

http://wiki.teltonika-networks.com/index.php?title=File:Networking_rutos_manual_modbus_modbus_serial_client_v2.png&filetimestamp=20231219135726&
http://wiki.teltonika-networks.com/index.php?title=File:Networking_rutos_manual_modbus_modbus_serial_client_global_button_v1.png&filetimestamp=20240507083711&
http://wiki.teltonika-networks.com/index.php?title=File:Networking_rutos_manual_modbus_modbus_tcp_client_modbus_tcp_server_devices_global_config_modal_v1.png&filetimestamp=20240412104403&
http://wiki.teltonika-networks.com/view/File:Networking_rutos_manual_modbus_modbus_serial_master_device_configuration.png
http://wiki.teltonika-networks.com/index.php?title=File:Networking_rutos_manual_modbus_modbus_serial_master_device_configuration_add_button_1.png&filetimestamp=20221122055051&
http://wiki.teltonika-networks.com/view/File:Networking_rutos_manual_modbus_modbus_serial_client_device_configuration_rs_device_modbus_client_configuration_v1_1.png

Stop bits 1| 2; default: 1

Stop bits sent at the end of every character allow the receiving
signal hardware to detect the end of a character and to
resynchronise with the character stream. Electronic devices
usually use one stop bit. Two stop bits are required if slow
electromechanical devices are used.

Parity
Even | Odd| Mark |
Space | None;
default: None

In serial transmission, parity is a method of detecting errors. An
extra data bit is sent with each data character, arranged so that
the number of 1 bits in each character, including the parity bit, is
always odd or always even. If a byte is received with the wrong
number of 1s, then it must have been corrupted. However, an
even number of errors can pass the parity check.
• None (N) - no parity method is used.
• Odd (O) - the parity bit is set so that the number of "logical
ones (1s)" has to be odd.
• Even (E) - the parity bit is set so that the number of "logical
ones (1s)" has to be even.
• Space (s) - the parity bit will always be a binary 0.
• Mark (M) - the parity bit will always be a binary 1.

Flow
control

None | RTS/CTS |
Xon/Xoff; default:
None

In many circumstances a transmitter might be able to send data
faster than the receiver is able to process it. To cope with this,
serial lines often incorporate a "handshaking" method, usually
distinguished between hardware and software handshaking.
• RTS/CTS - hardware handshaking. RTS and CTS are turned
OFF and ON from alternate ends to control data flow, for instance
when a buffer is almost full.
• Xon/Xoff - software handshaking. The Xon and Xoff characters
are sent by the receiver to the sender to control when the sender
will send data, i.e., these characters go in the opposite direction
to the data being sent. The circuit starts in the "sending allowed"
state. When the receiver's buffers approach capacity, the receiver
sends the Xoff character to tell the sender to stop sending data.
Later, after the receiver has emptied its buffers, it sends an Xon
character to tell the sender to resume transmission.

RS485:
Full
Duplex

off | on; default: off Enables RS485 full duplex.

Modbus Server Device Configuration

This section is used to create server instances that the Client (this RUT956 device) will be querying
with requests.

By default there are no instances created. To add a new server configuration, enter an instance
name, select a serial device instance and click the 'Add' button.

After clicking 'Add' you will be redirected to the newly added server's configuration page.

http://wiki.teltonika-networks.com/index.php?title=File:Networking_rutos_manual_modbus_modbus_serial_client_modbus_server_device_configuration.png&filetimestamp=20230922113814&
http://wiki.teltonika-networks.com/index.php?title=File:Networking_rutos_manual_modbus_modbus_serial_client_modbus_server_device_configuration_add_button.png&filetimestamp=20230922114157&

Server Device Configuration

The Server Device Configuration section is used to configure the parameters of Modbus RTU
servers that the Client (this RUT956 device) will be querying with requests. The figure below is an
example of the Server Device Configuration and the table below provides information on the fields
contained in that section:

Field Value Description
Enabled off | on; default: off Turns communication with the server device on or off.

Name string; default: none Server device's name, used for easier management
purposes.

Serial device serial device instance;
default: none

Specifies which serial device will be used on this
server.

Server ID integer [0..255]; default: 1

Server ID. Each server in a network is assigned a
unique identifier ranging from 1 to 255. When the
client requests data from a server, the first byte it
sends is the Server ID. When set to 0, the server will
respond to requests addressed to any ID.

Number of
timeouts integer [0..10]; default: 0 Skip pending request and reset connection after

number of request failures.

Frequency Period | Schedule; default:
Period

Period integer [1..99999];
default: none

Interval at which requests are sent to the server
device.

Timeout integer [1..60]; default: 1 Maximum response wait time.

Requests Configuration

A Modbus request is a way of obtaining data from Modbus servers. The client sends a request to a
servers specifying the function code to be performed. The server then sends the requested data back
to the Modbus client.

Note: Modbus Serial Client uses Register Number instead of Register Address for pointing to a
register. For example, to request the Uptime of a device, you must use 2 in the First Register field.

The Request Configuration list is empty by default. To add a new Request Configuration loon to the
Add New Instance section. Enter a custom name into the 'Name' field and click the 'Add' button:

The new Request Configuration should become visible in the list:

Field Value Description

http://wiki.teltonika-networks.com/index.php?title=File:Networking_rutos_manual_modbus_modbus_serial_client_server_device_configuration.png&filetimestamp=20230922114422&
http://wiki.teltonika-networks.com/index.php?title=File:Networking_rutos_manual_modbus_modbus_tcp_client_requests_configuration_add_new_instance.png&filetimestamp=20230922110246&
http://wiki.teltonika-networks.com/index.php?title=File:Networking_rutos_manual_modbus_modbus_tcp_master_requests_configuration_v1.png&filetimestamp=20221121133646&

Name string; default: Unnamed
Name of this Request
Configuration. Used for easier
management purposes.

Data type

8bit INT | 8bit UINT | 16bit INT, high byte first |
16bit INT, low byte first | 16bit UINT, high byte
first | 16bit UINT, low byte first | 32bit float
(various Byte order) | 32bit INT (various Byte
order) | 32bit UINT (various Byte order) | 64bit
INT (various Byte order) | 64bit UINT (various
Byte order) | 64bit float (various Byte order) |
ASCII | Hex | Bool | PDU; default: 16bit INT,
high byte first

Defines how read data will be
stored.

Function

Read coils (1) | Read input coils (2) | Read
holding registers (3) | Read input registers (4) |
Set single coil (5) | Set single coil register (6) |
Set multiple coils (15) | Set multiple holding
registers (16); default: Read holding registers
(3)

Specifies the type of register being
addressed by a Modbus request.

First Register integer [0..65535]; default: 1 First Modbus register from which
data will be read.

Register
Count /
Values

integer [1..2000]; default: 1 Number of Modbus registers that
will be read during the request.

Remove
Brackets off | on; default: off

Removes the starting and ending
brackets from the request (only for
read requests).

off/on slider off | on; default: off Turns the request on or off.
Delete [X] - (interactive button) Deletes the request.

Additional note: by default the newly added Request Configurations are turned off. You can use the
on/off slider to the right of the Request Configuration to turn it on:

After having configured a request, you should see a new 'Request Configuration Testing' section
appear. It is used to check whether the configuration works correctly. Simply click the 'Test' button
and a response should appear in the box below. Note: to use test buttons, you need to enable Client
section. A successful response to a test may look something like this:

Modbus Client Alarms

Alarms are a way of setting up automated actions when some Modbus values meet user-defined
conditions. When the Modbus Serial Client (this RUT956 device) requests some information from a
server device it compares that data to with the parameters set in an Alarm Configuration. If the
comparison meets the specified condition (more than, less than, equal to, not equal to), the Client
performs a user-specified action, for example, a Modbus write request or switching the state of an

http://wiki.teltonika-networks.com/index.php?title=File:Networking_rutos_manual_modbus_modbus_tcp_client_requests_configuration_on_off_slider.png&filetimestamp=20230922110631&
http://wiki.teltonika-networks.com/index.php?title=File:Networking_rutos_manual_modbus_modbus_tcp_master_requests_configuration_testing.png&filetimestamp=20200825101701&

output.

The figure below is an example of the Modbus Client Alarms list. To create a new Alarm, click the
'Add' button.

After this you should be redirected to that Alarm's configuration page which should look similar to
this:

Field Value Description
Enabled off | on; default: off Turns the alarm on or off.

Function code

Read Coil Status (1) | Read
Input Status (2) | Read
Holding Registers (3) |
Read Input Registers (4);
default: Read Coil Status
(1)

Modbus function used for this alarm's Modbus
request. The Modbus TCP Client (this RUT956 device)
perform this request as often as specified in the
'Period' field in Server Device Configuration.

Compared
condition data
type

8bit INT | 8bit UINT |
16bit INT, high byte first |
16bit INT, low byte first |
16bit UINT, high byte first
| 16bit UINT, low byte first
| 32bit float (various Byte
order) | 32bit INT (various
Byte order) | 32bit UINT
(various Byte order) | 64bit
INT (various Byte order) |
64bit UINT (various Byte
order) | 64bit float (various
Byte order) | ASCII | Hex |
Bool; default: 16bit INT,
high byte first

Select data type that will be used for checking
conditions.

First register
number

integer [1..65536]; default:
none

Number of the Modbus coil/input/holding-
register/input-register to read from.

Values various; default: none The value against which the read data will be
compared.

Condition
More than | Less than |
Equal to | Not Equal to |
Less or equal | More or
equal; default: More than

When a value is obtained it will be compared against
the value specified in the following field. The
comparison will be made in accordance with the
condition specified in this field.

Action frequency
Every trigger | First
trigger; default: Every
trigger

Describes how frequently the specified action will be
taken.

Redundancy
protection off | on; default: off Protection against executing a configured action too

often.
Redundancy
protection
period

integer [1..86400]; default:
none

Duration to activate redundancy protection for,
measured in seconds. This field becomes visible only
when 'Redundancy protection' is turned on.

http://wiki.teltonika-networks.com/index.php?title=File:Networking_rutos_manual_modbus_modbus_tcp_client_alarms_configuration_add_button.png&filetimestamp=20230922111345&
http://wiki.teltonika-networks.com/index.php?title=File:Networking_rutos_manual_modbus_modbus_tcp_master_alarms_configuration_v1.png&filetimestamp=20221121134754&

Action
SMS | MODBUS Write
Request| Trigger output;
default: MODBUS Write
Request

Action that will be taken if the condition is met.
Possible actions:
• SMS - sends and SMS message to a specified
recipient(s).
• Modbus Request - sends a Modbus Write request
to a specified server.
• Trigger output - changes state of selected I/O
output pin.

SMS: Message string; default: none SMS message text.
SMS: Phone
number

phone number; default:
none Recipient's phone number.

MODBUS Write
Request:
Timeout

integer [1..30]; default: 5 Maximum time to wait for a response.

MODBUS Write
Request: ID

integer [1..255]; default:
none Modbus server ID.

MODBUS Write
Request:
Modbus function

Read Single Coil (5) | Set
Single Register (6) | Set
Multiple Coils (15) | Set
Multiple Registers (16);
default: Set Single Coil
(5)

A function code specifies the type of register being
addressed by a Modbus request.

MODBUS Write
Request:
Executed action
data type

8bit INT | 8bit UINT |
16bit INT, high byte first |
16bit INT, low byte first |
16bit UINT, high byte first
| 16bit UINT, low byte first
| 32bit float (various Byte
order) | 32bit INT (various
Byte order) | 32bit UNIT
(various Byte order) | 64bit
INT (various Byte order) |
64bit UINT (various Byte
order) | 64bit float (various
Byte order) | ASCII | Hex |
Bool; default: Bool

Select data type that will be used for executing
action.

MODBUS Write
Request: First
register number

integer [0..65535]; default:
none

Begins reading from the register specified in this
field.

MODBUS Write
Request: Values

integer [0..65535]; default:
none

Register/Coil values to be written (multiple values
must be separated by space character).

Trigger output:
Output

Output (4) | Isolated
Output (3,4,8) | Relay
(5,10); default: Output (4)

Selects which output will be triggered.

Trigger output:
I/O Action

Turn On | Turn Off |
Invert; default: Turn On Selects the action performed on the output.

MQTT Modbus Gateway
The MQTT Modbus Gateway function is used to transfer Modbus data (send requests, receive
responses) over MQTT. When it is enabled, the device (this RUT956) subscribes to a REQUEST topic

and publishes on a RESPONSE topic on a specified MQTT broker. It translates received MQTT
message payload to a Modbus request and relays it to the specified Modbus TCP server.

When the MQTT Gateway receives a response from the server, it translates it to an MQTT message
and publishes it on the RESPONSE topic.

Below is an example of the MQTT Gateway page. Refer to the table for information on MQTT
Gateway configuration fields.

Field Value Description
Enable off | on; default: off Turns MQTT gateway on or off.

Host ip | host; default: 127.0.0.1 IP address or hostname of an MQTT
broker.

Port integer [0..65535]; default: 1883 Port number of the MQTT broker.

Request topic alphanumeric string; default:
request MQTT topic for sending requests.

Response topic alphanumeric string; default:
response MQTT topic for subscribing to responses.

QoS
At most once (0) | At least once (1)
| Exactly once (2); default: Exactly
once (2)

Specifies quality of service.

Username string; default: none Username for authentication to the MQTT
broker.

Password string; default: none Password for authentication to the MQTT
broker.

Client ID integer; default: none Specifies client ID for MQTT broker.

Keepalive integer; default: 5 Keepalive message to MQTT broker
(seconds)

Use TLS/SSL off | on; default: off Turns TLS support on or off
TLS type cert | psk; default: cert Selects the type of TLS encryption
TLS insecure off | on; default: off Disables TLS security
Certificate files
from device off | on; default: off Choose this option if you want to use

certificate files generated on device.
CA file string; default: none Upload/select certificate authority file.
Certificates file string; default: none Upload/select certificate file.
Key file string; default: none Upload/select certificate key file.
PSK string; default: none Specifies the pre-shared key.
Identity string; default: none Specifies identity.

Serial Gateway Configuration

Serial Gateway Configuration section displays Serial gateway instances currently existing on the
router.

http://wiki.teltonika-networks.com/index.php?title=File:Networking_rutos_manual_modbus_mqtt_gateway_scheme.png&filetimestamp=20200902111737&
http://wiki.teltonika-networks.com/view/File:Networking_rutos_manual_modbus_mqtt_gateway_v1.png

By default the list is empty. To create a new gateway instance, enter the ID of serial device, select
serial interface and click the 'Add' button.

After this you should be redirected to instance's configuration page which should look similar to this:

Field Value Description
Enable off | on; default: off Enables this Serial Gateway instance configuration.

Name string; default: none Name of the gateway instance. Used for management purposes
only.

Device
RS232 | RS485 | USB
RS232 interface;
default: RS232

Specifies which serial port will be used for serial communication.

Baud rate

300 | 1200 | 2400 |
4800 | 9600 | 19200 |
38400 | 57600 |
115200| 230400 |
460800 | 921600 |
1000000 | 3000000;
default: 9600

Serial data transmission rate (in bits per second).

Data bits 5 | 6 | 7 |8; default: 8 Number of data bits for each character.

Stop bits 1| 2; default: 1

Stop bits sent at the end of every character allow the receiving
signal hardware to detect the end of a character and to
resynchronise with the character stream. Electronic devices
usually use one stop bit. Two stop bits are required if slow
electromechanical devices are used.

Parity
Even | Odd| Mark |
Space | None;
default: None

In serial transmission, parity is a method of detecting errors. An
extra data bit is sent with each data character, arranged so that
the number of 1 bits in each character, including the parity bit, is
always odd or always even. If a byte is received with the wrong
number of 1s, then it must have been corrupted. However, an
even number of errors can pass the parity check.
• None (N) - no parity method is used.
• Odd (O) - the parity bit is set so that the number of "logical
ones (1s)" has to be odd.
• Even (E) - the parity bit is set so that the number of "logical
ones (1s)" has to be even.
• Space (s) - the parity bit will always be a binary 0.
• Mark (M) - the parity bit will always be a binary 1.

http://wiki.teltonika-networks.com/view/File:Networking_rutos_manual_modbus_mqtt_gateway_serial_gateway_configuration_add_button_v1_rs232_1.png
http://wiki.teltonika-networks.com/view/File:Networking_rutos_manual_modbus_mqtt_gateway_serial_gateway_configuration_rs232_1_v1.png

Flow
control

None | RTS/CTS |
Xon/Xoff; default:
None

In many circumstances a transmitter might be able to send data
faster than the receiver is able to process it. To cope with this,
serial lines often incorporate a "handshaking" method, usually
distinguished between hardware and software handshaking.
• RTS/CTS - hardware handshaking. RTS and CTS are turned
OFF and ON from alternate ends to control data flow, for instance
when a buffer is almost full.
• Xon/Xoff - software handshaking. The Xon and Xoff characters
are sent by the receiver to the sender to control when the sender
will send data, i.e., these characters go in the opposite direction
to the data being sent. The circuit starts in the "sending allowed"
state. When the receiver's buffers approach capacity, the receiver
sends the Xoff character to tell the sender to stop sending data.
Later, after the receiver has emptied its buffers, it sends an Xon
character to tell the sender to resume transmission.

RS485:
Full
Duplex

off | on; default: off Enables RS485 full duplex.

Request messages

Note: MQTT Gateway uses Register Number instead of Register Address for pointing to a register.
For example, to request the Uptime of a device, you must use 2 in the Register Number field.

Modbus request data sent in the MQTT payload should be generated in accordance with the one of
the following formats:

TCP:

 0 <COOKIE> <IP_TYPE> <IP> <PORT> <TIMEOUT> <SERVER_ID> <MODBUS_FUNCTION>
<FIRST_REGISTER> <REGISTER_COUNT/VALUES>

Serial:

 1 <COOKIE> <SERIAL_DEVICE_ID> <TIMEOUT> <SERVER_ID> <MODBUS_FUNCTION>
<FIRST_REGISTER> <REGISTER_COUNT/VALUES>

MODBUS TCP connection management messages:

 2 <COOKIE> <CONNECTION_INDEX> <ACTION>
2 <COOKIE> <CONNECTION_INDEX> 0 <IP_TYPE> <IP> <PORT> <TIMEOUT>

Explanation:

Cookie - a 64-bit unsigned integer in range [0..264-1]). A cookie is used in order to distinguish
which response belongs to which request, each request and the corresponding response
contain a matching cookie: a 64-bit unsigned integer.
IP type - host IP address type. Possible values:

0 - IPv4 address;
1 - IPv6 address;
2 - hostname that will be resolved to an IP address.

IP - IP address of a Modbus TCP server. IPv6 must be presented in full form (e.g.,
2001:0db8:0000:0000:0000:8a2e:0370:7334).

Port - port number of the Modbus TCP server.
Timeout - timeout for Modbus connection, in seconds. Range [1..999].
Server ID - Modbus TCP server ID. Range [1..255].
Modbus function - Modbus task type that will be executed. Possible values are:

1 - read coils;
2 - read input coils;
3 - read holding registers;
4 - read input registers;
5 - set single coil;
6 - write to a single holding register;
15 - set multiple coils;
16 - write to multiple holding registers.

First register - number (not address) of the first register/coil/input (in range [1..65536]) from
which the registers/coils/inputs will be read/written to.
Register count/value - this value depends on the Modbus function:

1 - coil count (in range [1..2000]); must not exceed the boundary (first coil number + coil
count <= 65537);
2 - input count (in range [1..2000]); must not exceed the boundary (first input number +
input count <= 65537);
3 - holding register count (in range [0..125]); must not exceed the boundary (first
register number + holding register count <= 65537);
4 - input register count (in range [0..125]); must not exceed the boundary (first register
number + input register count <= 65537);
5 - coil value (in range [0..1]);
6 - holding register value (in range [0..65535]);
15 - coil count (in range [1..1968]); must not exceed the boundary (first coil number +
coil count <= 65537); and coil values separated with commas, without spaces (e.g.,
1,2,3,654,21,789); there must be exactly as many values as specified (with coil count);
each value must be in the range of [0..1].
16 - register count (in range [1..123]); must not exceed the boundary (first register
number + register count <= 65537); and register values separated with commas,
without spaces (e.g., 1,2,3,654,21,789); there must be exactly as many values as
specified (with register count); each value must be in the range of [0..65535].

Serial device ID - a string used to identify a serial device. Must match with Device ID field in
MQTT Gateway page Serial gateway configuration section.
Connection index - a number used to identify a connection on which an action will be
preformed (in range [0..7]).
Action - a connection action. Possible values are:

0 - OPEN. This will open a closed connection, reopen an already open connection with
the same parameters or close an already open connection and open a new one with new
parameters.
1 - CLOSE. This will close an open connection and do nothing to the closed one.
2 - STATUS. This will respond with either OK 1 for an open connection or OK 0 for a
closed connection.

Response messages

A special response message can take one of the following forms:

<COOKIE> OK - for functions 6 and 16
<COOKIE> OK <VALUE> <VALUE> <VALUE>... - for function 3, where <VALUE>
<VALUE> <VALUE>... are read register values
<COOKIE> ERROR: ... - for failures, where ... is the
error description

Examples

Below are a few examples of controlling/monitoring the internal Modbus TCP Server on RUT956.

Reboot the device

Request:

0 65432 0 192.168.1.1 502 5 1 6 206 1

Response:

65432 OK

Retrieve uptime

Request:

0 65432 0 192.168.1.1 502 5 1 3 2 2

Response:

65432 OK 0 5590

If you're using Eclipse Mosquitto (MQTT implementation used on RUT956), Publish/Subscribe
commands may look something like this:

Retrieve uptime

Request:

mosquitto_pub -h 192.168.1.1 -p 1883 -t request -m "0 65432 0
192.168.1.1 502 5 1 3 2 2"

Response:

mosquitto_sub -h 192.168.1.1 -p 1883 -t response
65432 OK 0 5590

Modbus TCP over Serial Gateway
The Modbus TCP over Serial gateway serial type allows redirecting TCP data coming to a
specified port to an RTU specified by the Server ID. The Server ID can be specified by the user or be
obtained directly from the Modbus header.

Modbus TCP over Serial Gateway Configuration

Modbus TCP over Serial Gateway Configuration section displays gateway instances currently
existing on the router.

By default the list is empty. To create a new gateway instance, enter the name of instance, select
serial interface and click the 'Add' button.

After this you should be redirected to instance's configuration page which should look similar to this:

Field Value Description

Enable off | on; default: off Enables this Modbus TCP over Serial Gateway instance
configuration.

Name string; default: none Name of the gateway instance. Used for management
purposes only.

Device
RS232 | RS485 | USB
RS232 interface;
default: RS232

Specifies which serial port will be used for serial
communication.

Baud rate

300 | 1200 | 2400 |
4800 | 9600 | 19200 |
38400 | 57600 |
115200| 230400 |
460800 | 921600 |
1000000 | 3000000;
default: 9600

Serial data transmission rate (in bits per second).

Data bits 1. default=5 | 6 | 7 |8;
default: 8 Number of data bits for each character.

Stop bits 1| 2; default: 1

Stop bits sent at the end of every character allow the
receiving signal hardware to detect the end of a character
and to resynchronise with the character stream. Electronic
devices usually use one stop bit. Two stop bits are
required if slow electromechanical devices are used.

http://wiki.teltonika-networks.com/view/File:Networking_rutos_manual_modbus_modbus_tcp_over_serial_gateway_add_button_rs232_1_v1.png
http://wiki.teltonika-networks.com/index.php?title=File:Networking_rutos_manual_modbus_modbus_tcp_over_serial_gateway_configuration_rs232_1_v2.png&filetimestamp=20231214073044&

Parity
Even | Odd| Mark |
Space | None; default:
None

In serial transmission, parity is a method of detecting
errors. An extra data bit is sent with each data character,
arranged so that the number of 1 bits in each character,
including the parity bit, is always odd or always even. If a
byte is received with the wrong number of 1s, then it must
have been corrupted. However, an even number of errors
can pass the parity check.
• None (N) - no parity method is used.
• Odd (O) - the parity bit is set so that the number of
"logical ones (1s)" has to be odd.
• Even (E) - the parity bit is set so that the number of
"logical ones (1s)" has to be even.
• Space (s) - the parity bit will always be a binary 0.
• Mark (M) - the parity bit will always be a binary 1.

Flow control
None| RTS/CTS |
Xon/Xoff; default:
None

In many circumstances a transmitter might be able to send
data faster than the receiver is able to process it. To cope
with this, serial lines often incorporate a "handshaking"
method, usually distinguished between hardware and
software handshaking.
• RTS/CTS - hardware handshaking. RTS and CTS are
turned OFF and ON from alternate ends to control data
flow, for instance when a buffer is almost full.
• Xon/Xoff - software handshaking. The Xon and Xoff
characters are sent by the receiver to the sender to control
when the sender will send data, i.e., these characters go in
the opposite direction to the data being sent. The circuit
starts in the "sending allowed" state. When the receiver's
buffers approach capacity, the receiver sends the Xoff
character to tell the sender to stop sending data. Later,
after the receiver has emptied its buffers, it sends an Xon
character to tell the sender to resume transmission.

Listening IP ip; default: none
IP address to listen for incoming connections. (0.0.0.0)
value may be used to listen for incoming connections on
any interface or IP address.

Port integer [0..65535];
default: none Port number to listen for incoming connections.

Server ID
configuration
type

User defined |
Obtained from TCP;
default: User
defined

Specifies whether server IDs are user defined or
automatically obtained from TCP.

Server ID integer; default: none

Specifies the server ID of range of permitted server IDs.
The way this field is named and its function depends on
the value of the Server ID configuration field.
A range of IDs can be specified by placing a hyphen (-)
between two integer numbers. For example, if you permit
server IDs in the range of 10 to 20, you would specify it as:
10-20
You can also specify multiple values that are not connected
in a range using commas (,). For example, to specify 6, 50
and 100 as permitted server IDs, you would have to use:
6,50,100

Permitted server
IDs

range of integers;
default: 1-247 Read Server ID field description.

CRC verification off | on; default: off Checks if sent serial message is not disturbed.

Echo off | on; default: off
Turns RS232 echo on or off. RS232 echo is a loopback test
usually used to check whether the RS232 cable is working
properly.

RS485: Full
Duplex off | on; default: off Enables RS485 full duplex.

IP Filter

The IP Filter section is used for configuring which network is allowed to communicate with the
device. You may add a new instance by selecting the Interface and pressing Add.

Then enter the IP address and save.

See also
Monitoring via Modbus - detailed examples on how to use Modbus TCP

http://wiki.teltonika-networks.com/index.php?title=File:Networking_rutos_manual_console_ip_filter.png&filetimestamp=20211012072355&
http://wiki.teltonika-networks.com/index.php?title=File:Networking_rutos_manual_console_ip_filter_instance_v2.png&filetimestamp=20231219142225&
http://wiki.teltonika-networks.com/view/Monitoring_via_Modbus

