
https://wiki.teltonika-networks.com/view/TRB145_Monitoring_via_Modbus

TRB145 Monitoring via Modbus
Main Page > TRB Gateways > TRB145 > TRB145 Configuration Examples > TRB145 Monitoring via Modbus

Router monitoring via Modbus TCP Linux guide applies to TRB145 devices.

Contents

1 Introduction
2 Configuring the router
3 Installing the necessary software
4 Getting router parameters

4.1 Get Parameters
4.2 Modbus read

5 Interpreting the response
5.1 WAN IP address
5.2 Signal strength
5.3 Text

6 Setting router values
6.1 Set Parameters
6.2 APN
6.3 Send SMS message

7 External links

Introduction
Modbus is a serial communications protocol originally published by Modicon (now Schneider
Electric) in 1979 for use with its programmable logic controllers (PLCs). Modbus has become a de
facto standard communication protocol and is now a commonly available means of connecting
industrial electronic devices. The main reasons for the use of Modbus in the industrial environment
are:

developed with industrial applications in mind,
openly published and royalty-free,
easy to deploy and maintain,
moves raw bits or words without placing many restrictions on vendors.

Modbus enables communication among many devices connected to the same network, for example, a
system that measures temperature and humidity and communicates the results to a computer.
Modbus is often used to connect a supervisory computer with a remote terminal unit (RTU) in
supervisory control and data acquisition (SCADA) systems. Many of the data types are named from
its use in driving relays: a single-bit physical output is called a coil, and a single-bit physical input is
called a discrete input or a contact.

This article provides a guide on how to use Modbus TCP to monitor TRB145 routers with a PC using

https://wiki.teltonika-networks.com/view/Main_Page
https://wiki.teltonika-networks.com/view/TRB_Gateways
https://wiki.teltonika-networks.com/view/TRB145
https://wiki.teltonika-networks.com/view/TRB145_Configuration_Examples
http://wiki.teltonika-networks.com/view/File:Configuration_examples_modbus_logo.png


a Linux Operating System.

Configuring the router
In order to start using Modbus TCP, we must first configure the router. Modbus TCP configuration
from the router's side is very simple. All you need to do is log in to the router's WebUI, go to
Services → Modbus, Enable the Modbus TCP service, enter a Port number through which the
Modbus TCP communication will take place and Allow remote access if you wish to connect to the
router remotely (from WAN).

Installing the necessary software
Next you'll need software capable of communicating via Modbus. The software that we'll be using
for this guide is called modbus-cli. To get it you'll first have to install ruby. To do so, open the
Terminal app and enter these commands.

$ sudo apt-get install ruby
$ sudo gem install modbus-cli

Getting router parameters
Modbus TCP can be used to both get and set certain router parameters. First lets do an overview of
how to obtain parameters via Modbus TCP. Please keep in mind that in order to get routers
parameters when using Request Configuration you need to use Register Number instead of
Register Address.

Get Parameters

Modbus parameters are held within registers. Each register contains 2 bytes of information. For
simplification, the number of registers for storing numbers is 2 (4 bytes), while the number of
registers for storing text information is 16 (32 bytes).

The register numbers and corresponding system values are described in the table below:

required value register address register number number of registers representation
System uptime 1 2 2 32 bit unsigned integer
Mobile signal strength (RSSI in dBm) 3 4 2 32 bit integer
System temperature (in 0.1 °C) 5 6 2 32 bit integer
System hostname 7 8 16 Text
GSM operator name 23 24 16 Text
Router serial number 39 40 16 Text
Router name 71 72 16 Text
Network registration info 103 104 16 Text
Network type 119 120 16 Text
Current WAN IP address 139 140 2 8 bit unsigned integer
Mobile data received today (SIM1) 185 186 2 32 bit unsigned integer
Mobile data sent today (SIM1) 187 188 2 32 bit unsigned integer
Mobile data received this week (SIM1) 189 190 2 32 bit unsigned integer
Mobile data sent this week (SIM1) 191 192 2 32 bit unsigned integer
Mobile data received this month (SIM1) 193 194 2 32 bit unsigned integer
Mobile data sent this month (SIM1) 195 196 2 32 bit unsigned integer
Mobile data received last 24h (SIM1) 197 198 2 32 bit unsigned integer
Mobile data sent last 24h (SIM1) 199 200 2 32 bit unsigned integer
Mobile data received last 7 days (SIM1) 292 293 2 32 bit unsigned integer
Mobile data sent 7 days (SIM1) 294 295 2 32 bit unsigned integer

http://wiki.teltonika-networks.com/index.php?title=File:Networking_rutos_manual_modbus_modbus_tcp_slave.png&filetimestamp=20200825095939&
https://wiki.teltonika-networks.com/view/TRB145_Modbus#Requests_configuration
http://wiki.teltonika-networks.com/view/RSSI


Mobile data received last 30 days (SIM1) 296 297 2 32 bit unsigned integer
Mobile data sent last 30 days (SIM1) 298 299 2 32 bit unsigned integer
PIN 3 status (4 PIN connector) 324 325 1 16 bit unsigned integer
PIN 4 status (4 PIN connector) 325 326 1 16 bit unsigned integer
PIN 3 direction 326 327 1 16 bit unsigned integer
PIN 4 direction 327 328 1 16 bit unsigned integer
Modem ID 328 329 8 Text
IMSI 348 349 16 Text
Unix timestamp 364 365 2 32 bit unsigned integer
Local ISO time 366 367 12 Text
UTC time 378 389 12 Text
LAN IP 394 395 2 8 bit unsigned integer
Add SMS 397 398 90 Text

Modbus read

To obtain parameters from the system, the modbus read command is used. The syntax for this
command is:

$ modbus read [OPTIONS] HOST_NAME REGISTER_ADDRESS NUMBER_OF_REGISTERS

OPTIONS can describe things like data type, port number, type of addressing, etc.

HOST_NAME is the router's hostname or IP address (WAN IP, if you are connecting remotely).

REGISTER_ADDRESS specifies the register that you wish to read.

NUMBER_OF_REGISTERS specifies how many registers should be read starting from the register
specified in REGISTER_ADDRESS.

Note: all of this information and more can be viewed by executing these commands in The Linux
Terminal: modbus read -h or modbus read --help.

For the first example, lets use a modbus read command to attempt to obtain the router's uptime
value in seconds. If you look back at the table above, you will see that the uptime value is stored in
two registers starting from the first register, therefore:

$ modbus read -w -p 12345 192.168.2.1 %MW001 2

-w specifies the data type. In this case, unsigned 16 bit integers.

-p specifies the port number.

192.168.2.1 - the router's LAN IP address.

%MW001 specifies the register address.

2 - specifies how many registers should be read.

As you can see from the example above, the router returns the values stored in two registers: the
first one and the second one. The values returned are presented in decimal form.

http://wiki.teltonika-networks.com/view/File:Configuration_examples_modbus_uptime_example.png


Interpreting the response
The values are returned in decimal and, if you add -D to the command, hexadecimal forms.
Sometimes the answer is self-explanatory as in the example above. But, since a register only hold 2
bytes (16 bits) of information, the value stored in a register can't be higher than 65535 (216 -1). So
what happens if the router's uptime is higher than that? Lets examine another example where the
router's uptime is higher than 65535:

When the value climbs over 65535 the counter resets and the value held by the first register
increases by 1. So one way to interpret the results would be to multiply the value in the first register
by 65536 (216) and add it to the value of the second register: %MW1 * 65536 + %MW2. Which,
following from the example above, would be: 1 * 65536 + 3067 = 68603 s or 19 hours 3 minutes
23 seconds.

However, while this works when calculating uptime values, it will not work for all parameters. The
correct way to calculate the final values would be to first convert them to binary. As mentioned
earlier in this chapter, a register holds 16 bits of information, which can be represented by a 16-digit
long binary number. Following from the example above, the first register's value of 1 converted to
binary would be 0000 0000 0000 0001 and the second register's value of 3067 would be 0000
1011 1111 1011. You can easily convert numbers from one numeral system to another using any
online conversion tool:

The zeros at the beginning are added to represent the fact that the numbers are expressed in a 16-
bit format. The next step is to add the two values, but not in the traditional sense. Instead, the value
of the second register should act as an extension of the value of the first register or, to put it more
simply, the values should be added up as if they were strings, i.e., 0000 0000 0000 0001 + 0000
1011 1111 1011 = 0000 0000 0000 0001 0000 1011 1111 1011. What happens here is that in
this sum the first register's value of 1 shouldn't be considered as 1, but instead as 65536 (216) ,
which is the value of the 17th digit of a 32-bit long binary number. If you convert this value back to
decimal, you will see that we get the same answer:

WAN IP address

Lets examine a different, more complex example by issuing a request for the router's WAN IP
address. If you look at the table above, you will see that the WAN IP address value is contained
within the 139th and 140th registers. Therefore, we should specify the 139th address and read 2
registers from that address:

$ modbus read -w -p 12345 192.168.2.1 %MW139 2

An IPv4 address is divided into 4 segments. Each segment contains 8 bits (or 1 byte) of information:

http://wiki.teltonika-networks.com/view/File:Configuration_examples_modbus_higher_uptime_example_v2.png
http://wiki.teltonika-networks.com/view/File:Configuration_examples_modbus_decimal_to_binary.png
http://wiki.teltonika-networks.com/view/File:Configuration_examples_modbus_binary_to_decimal.png
http://wiki.teltonika-networks.com/view/Monitoring_via_Modbus#List_of_parameters
http://wiki.teltonika-networks.com/view/File:Configuration_examples_modbus_wan_ip_v2.png


So in order to get the WAN IP address from the response received, we'll need to convert the values
of both registers to binary and split them into 8-bit segments. Lets do that with the values from the
last example:

%MW139 2692 and %MW140 30404, which converted to binary would be: 2692 → 0000 1010
1000 0100 ; 30404 → 0111 0110 1100 0100.

As discussed earlier, we'll need to separate the two numbers into 8-bit segments to get the IP
address:

Signal strength

Yet another different example is Signal strength values, because they are negative. Lets examine
an example of this to see how the values should be interpreted:

To change the sing of a binary number you must invert it add 1 to it. In the case of signal strength,
you don't need both register values to do so, only the second one (register 4), which is, in our
example, 65477. When converted to binary it's: 65447 → 1111 1111 1100 0101. Next, we'll to
invert it and add 1:

The value we got is 0000 0000 0011 1011. When converted to decimal it becomes 59, so the final
value is - 59

Text

Some values like Hostname, Router name, Network type are represented as text in their original
form, but are stored in registers as numbers. You can interpret these values the same way as all
discussed before (by converting them to binary and then to text), but a simpler way would be to get
them in hexadecimal form and then convert them to text. To do so, we'll have to add the -D
parameter to the command. Lets do it by asking for the router's Hostname:

$ modbus read -D -w -p 12345 192.168.2.1 %MW007 16

Ignore the first 9 segments and the last segments that contain only zeroes (highlighted in red). Copy

http://wiki.teltonika-networks.com/view/File:Configuration_examples_modbus_binary_ip_v2.png
http://wiki.teltonika-networks.com/view/File:Configuration_examples_modbus_ip_reconstruction.png
http://wiki.teltonika-networks.com/view/File:Configuration_examples_modbus_signal_strength.png
http://wiki.teltonika-networks.com/view/File:Configuration_examples_modbus_negative_binary.png
http://wiki.teltonika-networks.com/view/File:Configuration_examples_modbus_hostname_example_v2.png


the response (highlighted in green) and paste it into a hexadecimal to text (ASCII) converter:

Setting router values
The Modbus daemon also supports the setting of some system parameters. To accomplish this task
the modbus write command is used. System related parameters and how to use them are described
below. The register address specifies from which register to start writing the required values. All
commands, except “Change APN”, accepts only one input parameter (more on changing APN can be
found below).

Set Parameters

The Modbus daemon can also set some device parameters.

value to set register address register number register value description

Hostname 7 8 Hostname (in
decimal form) Changes hostname

Device name 71 72 Device name (in
decimal form) Changes device name

Switch mobile data connection (ON/OFF*) 204 205 1 | 0 Turns mobile data connection ON or OFF
Reboot 206 207 1 Reboots the router

Change APN 207 208 APN code

Changes APN.
The number of input registers may vary depending on the length of
the APN, but the very first byte of the set APN command denotes
the number of the SIM card for which to set the APN. This byte
should be set to:
• 1 - to set APN for SIM1
• 2 - to set APN for SIM2

Switch PIN 3 state 324 325 1|0 Toggles PIN 3 ON or OFF, when output is selected
Switch PIN 4 state 325 326 1|0 Toggles PIN 4 ON or OFF, when output is selected
Switch PIN 3 direction 326 327 1|0 Toggles PIN 3 direction between INPUT (0) or OUTPUT (1)
Switch PIN 4 direction 327 328 1|0 Toggles PIN 4 direction between INPUT (0) or OUTPUT (1)

Change LAN IP 394 395 IPv4 (in decimal
form) Changes device LAN IP

Send SMS 396 397 1|0 Sends an SMS with content defined in Add SMS (397) register

Add SMS 397 398 Message (in decimal
form)

Define SMS content which will be sent using Send SMS (396)
register.
The register array is split into two parts that represent the
recipient's "phone number" (first 10 registers) and the "SMS
message contents" (remaining 80 registers).

As you can see, the only difference is the digit at the end - 0 for OFF, 1 for ON. The same is true for
all other parameters that accept only two input values.

In the case of SIM switch there are three values - 0, 1 and 2. 1 makes the first SIM card slot in use,
2 makes the second SIM card slot in use and 0 initiates a switc from the SIM card in use to the
opposite SIM card. For example, to initiate a switch to the second SIM card the command should
look like this:

$ modbus write -w -p 12345 192.168.2.1 %MW205 2

The reboot function only takes one value: 1. It simply reboots the router. To initiate a reboot, use
this command:

$ modbus write -w -p 12345 192.168.2.1 %MW206 1

http://wiki.teltonika-networks.com/view/File:Configuration_examples_modbus_hex_to_text.png


APN

APN is the only parameter that can accept more than one input value. For the APN parameter the
number of input registers may vary. The very first byte of an APN command denotes the number of
the SIM card for which the APN will be set. This byte should be set to 1 (in order to set the APN for
SIM card number 1) or to 2 (in order to set the APN for SIM card number 2). The rest of the string
should be entered one symbol at a time. Each symbol should be converted from ASCII (regular text)
to decimal.

As an example lets try to change the router's first SIM card's APN to gprs.fix-ip.omnitel1.net:

$ modbus write -w -D -p 12345 192.168.2.1 %MW207 1 103 112 114 115 46 102 105
120 45 105 112 46 111 109 110 105 116 101 108 49 46 110 101 116

The value of the first byte is highlighted in blue and, in this case, it denotes that the APN value
should be changed for the first SIM card. The value of the APN string itself is highlighted in green.
Use an ASCII to Decimal online converter to convert individual letters to Decimal code.

Send SMS message

To send an SMS message from the router using Modbus, first, we would need to specify the
recipient‘s number and the message itself. This information should be stored in register address
397, of which the first 10 registers are dedicated to a phone number while the remaining 80
registers – are for message content. Afterward, we would need to set the 396 register to a value of
1.

Phone number:

Let’s say we have the following phone number, which would be used as a recipient 0011123456789
(where 00 is a substitute for a plus sign and 111 represents the country code). This number’s
representation in hexadecimal format would be 30 30 31 31 31 32 33 34 35 36 37 38 39, but since
10 registers are reserved for a phone number, the remaining spaces should be filled with zeroes,
resulting in the following phone number representation:

0x3030 0x3131 0x3132 0x3334 0x3536 0x3738 0x3900 0 0 0

Here 0x characters are needed for the modbus-cli application to treat input as hexadecimal values.

Message:

If we would want to send Hello, this is a test SMS message, this message’s representation in
hexadecimal format would be

0x4865 0x6C6C 0x6F2C 0x2074 0x6869 0x7320 0x6973 0x2061 0x2074 0x6573 0x7400



Full command:

Executing the following two modbus-cli commands would allow us to send SMS message:

$ modbus write -D -p 502 192.168.1.1 %MW397 0x3030 0x3131 0x3132 0x3334
0x3536 0x3738 0x3900 0 0 0 0x4865 0x6C6C 0x6F2C 0x2074 0x6869 0x7320 0x6973
0x2061 0x2074 0x6573 0x7400
$ modbus write -D -p 502 192.168.1.1 %MW396 1

External links
Online unit converters:

http://www.unit-conversion.info/
http://www.binaryhexconverter.com/

http://www.unit-conversion.info/
http://www.binaryhexconverter.com/

