
https://wiki.teltonika-networks.com/view/UCI_command_usage

UCI command usage
Main Page > General Information > Configuration Examples > Router control and monitoring > UCI command usage

The information on this page is updated in accordance with the 00.07.4 firmware version .

Unified Configuration Interface (UCI) is a small utility written in C (a shell script-wrapper is
available as well) and is intended to centralize the whole configuration of a device running on
OpenWrt.

Contents

1 Summary
2 How do I execute UCI commands?
3 Available commands
4 Configuration hierarchy

4.1 Sections
4.2 Configuration files

5 Obtaining parameters
5.1 UCI get
5.2 UCI show

6 Setting parameters
6.1 UCI set
6.2 UCI add_list
6.3 Extensive example

7 Additional examples
7.1 Site Blocking
7.2 DHCP Server
7.3 Mobile Data Limit

8 External links

Summary
UCI commands provide the user with the maximum degree of control since they can be issued via
many different forms of router monitoring and administration (SSH, CLI, SMS, JSON-RPC) and can
be used to set or get any router parameter. This chapter is a guide on how to use UCI commands
with RUT devices.

How do I execute UCI commands?
UCI commands can executed via the following methods:

SSH - you can use UCI commands via SSH either with Linux OS's Terminal app or the PuTTY
app with Windows OS (a download link is provided at the bottom of this page)

https://wiki.teltonika-networks.com/view/Main_Page
https://wiki.teltonika-networks.com/view/General_Information
https://wiki.teltonika-networks.com/view/Configuration_Examples
https://wiki.teltonika-networks.com/view/Router_control_and_monitoring
https://wiki.teltonika-networks.com/view/FW_%26_SDK_Downloads
#How_do_I_execute_UCI_commands.3F
#How_do_I_execute_UCI_commands.3F
#How_do_I_execute_UCI_commands.3F

CLI - you can use UCI commands via the Command Line Interface found in the router's
WebUI

SMS - you can execute UCI commands via SMS messages with the SMS Utilities uci api rule

JSON-RPC - you can execute UCI commands via JSON-RPC. Refer to this guide for more
information: Monitoring via JSON-RPC

Available commands
This section provides a list of possible UCI commands and options.

UCI commands
Command Target Description

batch - Executes a multi-line UCI script which is typically wrapped into a here document syntax
export [<config>] Exports the configuration in a machine readable format. It is used internally to evaluate configuration files as shell scripts
import [<config>] Imports configuration files in UCI syntax
changes [<config>] Lists staged changes to the given configuration file or if none given, all configuration files
commit [<config>] Writes changes of the given configuration file, or if none is given, all configuration files, to the filesystem. All "uci set", "uci add", "uci rename" and "uci delete" commands are

staged into a temporary location until they are written to flash with the "uci commit" command. This is used exclusively for UCI commands and is not needed after editing
configuration files with a text editor

add <config> <section-type> Adds an anonymous section of type section-type to the given configuration
add_list <config>.<section>.<option>=<string> Adds the given string to an existing list option
del_list <config>.<section>.<option>=<string> Removes the given string from an existing list option
show [<config>[.<section>[.<option>]]] Shows the given option, section or configuration in compressed notation. If no option is given, shows all configuration files
get <config>.<section>[.<option>] Gets the value of the given option or the type of the given section
set <config>.<section>[.<option>]=<value> Sets the value of the given option, or add a new section with the type set to the given value
delete <config>[.<section>[[.<option>][=<id>]]] Deletes the given section or option
rename <config>.<section>[.<option>]=<name> Renames the given option or section to the given name
revert <config>[.<section>[.<option>]] Reverts the given option, section or configuration file. Used to undo any changes performed with UCI and not yet committed with uci commit
reorder <config>.<section>=<position> Moves the specified section to the given position. Used for easier management purposes

Options

-c <path> set the search path for config files (default: /etc/config)
-d <str> set the delimiter for list values in uci show
-f <file> use <file> as input instead of stdin
-m when importing, merge data into an existing package
-n name unnamed sections on export (default)
-N don't name unnamed sections
-p <path> add a search path for config change files
-P <path> add a search path for config change files and use as default
-q quiet mode (don't print error messages)
-s force strict mode (stop on parser errors, default)
-S disable strict mode
-X do not use extended syntax on 'show'

Configuration hierarchy
UCI commands can be used to set and obtain parameters, but to do so, one has to first know the
names of the config file, its section and the option that they are trying to interact with. Different
configurations for different router functions and services are stored in config files. These config files
have sections and section usually store multiple options

The elements in the UCI model are:

config: main configuration groups like network, system, firewall. Each configuration group has
it's own file in /etc/config
sections: a config is divided into sections. A section can either be named or unnamed
types: a section can have a type. E.g, in the network config we typically have sections of the
type "interface"

http://wiki.teltonika-networks.com/index.php?title=CLI&action=edit&redlink=1
http://wiki.teltonika-networks.com/view/SMS_Utilities#UCI_API_rule
http://wiki.teltonika-networks.com/index.php?title=Monitoring_via_JSON-RPC&action=edit&redlink=1

options: each section has options that hold configuration values
values: value of an option

Sections

Sections deserve some extra explanation in regard to naming. A section can be named or unnamed.
Unnamed sections will get an autogenerated ID/CFGID (like "cfg023579") and be presented with an
anonymous-name (like "@wifi-iface[0]")

Example of anonymous-name (cmd: uci show wireless):

...
wireless.@wifi-iface[0]=wifi-iface
wireless.@wifi-iface[0].device=radio0
wireless.@wifi-iface[0].network=lan
wireless.@wifi-iface[0].mode=ap
...

Example of autogenerated ID/CFGID (cmd: uci show wireless.@wifi-iface[0]):

...
wireless.cfg023579=wifi-iface
wireless.cfg023579.device=radio0
wireless.cfg023579.network=lan
wireless.cfg023579.mode=ap
...

Configuration files

This section provides a list of all available configuration files of RUT routers. Note that these are all
possible config files from any RUT router (RUT230, RUT240, RUT850, RUT950, RUT955) and that
therefore some of them may not exist in your router.

File Description
/etc/config/avl Stores AVL (Automatic Vehicle Location)

configuration settings
/etc/config/buttons Defines the behavior of the reset button on the

device
/etc/config/call_utils Provides utilities for making and managing calls
/etc/config/cli Defines command-line interface (CLI) settings
/etc/config/dhcp Configures Dynamic Host Configuration Protocol

(DHCP) settings for the network
/etc/config/dropbear Configures settings for the Dropbear SSH server
/etc/config/email_to_sms Configures settings for the email-to-SMS gateway
/etc/config/events_reporting Configures settings for reporting system events

http://wiki.teltonika-networks.com/index.php?title=File:Uci_config_hierarchy_v3.jpg&filetimestamp=20230329080815&
http://wiki.teltonika-networks.com/view/RUT230
http://wiki.teltonika-networks.com/view/RUT240
http://wiki.teltonika-networks.com/view/RUT850
http://wiki.teltonika-networks.com/view/RUT950
http://wiki.teltonika-networks.com/view/RUT955

/etc/config/firewall Configures firewall settings
/etc/config/fstab Configures file system mount points
/etc/config/gps Configures settings for the Global Positioning

System (GPS)
/etc/config/hwinfo Provides hardware information about the device
/etc/config/iojuggler Provides utilities for managing input/output (IO)

settings
/etc/config/ioman Provides utilities for managing input/output (IO)

settings
/etc/config/ip_blockd Configures IP address blocking settings and

stores blocked IP addresses
/etc/config/ipsec Configures settings for the IPsec VPN
/etc/config/kmod_man Manages kernel modules
/etc/config/mdcollectd Collects and sends system metrics to a remote

server
/etc/config/modbus Configures settings for the Modbus protocol
/etc/config/modbus_data_sender Sends Modbus data to a remote server
/etc/config/modbus_master Configures the device as a Modbus master.
/etc/config/modbusgateway Configures the device as a Modbus gateway.
/etc/config/multi_wifi Configures settings for multiple Wi-Fi networks.
/etc/config/mwan3 Configures settings for Multi-WAN load

balancing and failover.
/etc/config/network Configures network settings.
/etc/config/ntpclient Configures settings for the Network Time

Protocol (NTP) client.
/etc/config/ntpserver Configures settings for the NTP server.
/etc/config/openvpn Configures settings for the OpenVPN VPN.
/etc/config/operctl Provides utilities for managing system

operations.
/etc/config/overview Provides an overview of the system.
/etc/config/p910nd Configures settings for the p910nd printer

server.
/etc/config/package_restore Restores installed packages after formware

update.
/etc/config/periodic_reboot Configures periodic system reboots.
/etc/config/ping_reboot Configures system reboots triggered by ping

responses.
/etc/config/post_get Configures POST/GET service.
/etc/config/pptpd Configures settings for the PPTP VPN server.
/etc/config/profiles Configures profiles for the system.
/etc/config/quota_limit Configures mobile Data Limits.
/etc/config/rms_mqtt Configures settings for the RMS connect.
/etc/config/rpcd Configures settings for the Remote Procedure

Call (RPC) daemon.
/etc/config/rs_console Configures settings for the serial console.
/etc/config/rs_modbus Configures settings for the Modbus protocol over

serial.

/etc/config/rs_modem Configures settings for the modem.
/etc/config/rs_overip Configures settings for the serial over IP

protocol.
/etc/config/rut_fota Configures settings for firmware over the air

(FOTA) updates.
/etc/config/sim_switch Configures settings for switching between SIM

cards.
/etc/config/simcard Configures settings for the SIM card.
/etc/config/sms_gateway Configures settings for the SMS gateway.
/etc/config/sms_utils Provides utilities for managing SMS messages.
/etc/config/snmpd Configures the Simple Network Management

Protocol (SNMP) daemon.
/etc/config/snmptrap Configures settings for SNMP traps.
/etc/config/snmptrap-opkg Installs and configures the SNMP trap package.
/etc/config/socat Configures settings for the socat command-line

utility.
/etc/config/system Configures system settings.
/etc/config/telnetd Configures settings for the Telnet daemon.
/etc/config/uhttpd Configures settings for the HTTP server.
/etc/config/user_groups Configures user groups.
/etc/config/vuci Configures settings for the VuCI web interface.
/etc/config/widget Configures widgets for the web interface.
/etc/config/wireless Configures wireless network settings.
/etc/config/xl2tpd Configures settings for the L2TP VPN server.

Obtaining parameters
This section will overview uci get and uci show commands used to obtain router parameters, option
and section names and contents of entire configs or sections.

UCI get

The uci get command returns values for specific options. When using uci get, you have provide the
correct path to the option that you are looking for. For example, in order to obtain the Wi-Fi Access
Point's SSID you would have to use a command that looks like this:

uci get wireless.@wifi-iface[0].ssid

Response:

The command above returns the Wi-Fi Access Point's SSID. As you can see the uci get command is
used. What follows after the command is the path to the value that we're looking for (SSID, in this
case). The SSID value can be found in the wireless config, the @wifi-iface[0] section, stored under an
option called ssid. So the basic syntax for a uci get command is this:

http://wiki.teltonika-networks.com/view/File:Uci_get_wireless_ssid_response.png

uci get <config>.<section>[.<option>]

UCI show

If you don't know what the exact option is called and in which section of what config file it is stored,
you can use the uci show command. uci show can also be used to obtain values of specific options,
but it is more commonly used to display the contents of entire sections or configs. Lets modify the
example above by saying that want to find out the SSID value but don't know the exact section or
option under which the value is stored. In this case we'll the uci show command to view the contents
of the entire wireless config:

uci show wireless

Response:

As you can see, the response shows the entire wireless config and its entities. Note that instead of
just showing values (like in the case of uci get) you can see the config name, section name and
option name before each one.

Most config file names are simple. Wireless config is called wireless, OpenVPN config is called
openvpn, etc. But even so one doesn't necessarily have to know what a config file is called, especially
before interacting with it. To see the names of all config files and what kind of settings they store
you can refer to the table above. Or if you're CLI or SSH and want to check the names of config
files on the spot, you can use the ls command. Since RUT configs ar stored in /etc/config, the full
commands should look like this:

ls /etc/config

The ls command is used to view the contents of a directory. Here is an example of the /etc/config
directory of a RUT955 router:

So when you plan on obtaining specific parameters or setting parameter values, you should always
start with finding out option and section names. To accomplish this, we recommend using the uci
show <config> commands.

Setting parameters
UCI can also be used to set parameters, add lists of parameters and even add entire sections to
config files.

UCI set

The uci set command is used to set the values of specific options. It can set only one option at a
time. For example, this time lets try changing the Wi-Fi Access Point's SSID to wifi_set_by_uci:

http://wiki.teltonika-networks.com/view/File:Uci_show_wireless_response_v2.png
http://wiki.teltonika-networks.com/view/UCI_command_usage#Configuration_files
http://wiki.teltonika-networks.com/view/File:Uci_ls_config.png

uci set wireless.@wifi-iface[0].ssid=wifi_set_by_uci

As you may have noticed, the command is very similar to uci get, except it has an equals to ('=') sign
added at the end and after the sign is the value that we want to assign to the option.

The next step is to commit the changes by using the uci commit command and to restart all the
services relevant to our configuration by using the /etc/init.d/wireless restart command:

uci commit wireless
/etc/init.d/wireless restart

After this, your changes will be applied and in use. Notice that when using uci commit you can
specify the config file for which you want to commit changes (you can even specify the exact section
and option). This is useful when making changes to multiple options in case you make any mistakes,
because before committing any changes you can easily undo them with the uci revert command.
The command by itself will undo all the changes made by uci up until the last commit. It can also be
used on specific config files, sections and options in order to undo specific changes.

UCI add_list

Some variables hold more than one value, unlike options. These variables are called lists. For
example, if you use MAC filter on your Wi-Fi Access point, the MAC addresses are saved not as
options but as a list.

Example of maclist (cmd: uci show wireless):

...
wireless.@wifi-iface[0].macfilter=deny
wireless.@wifi-iface[0].maclist=15:15:12:64:66:14 15:15:12:64:66:15
15:15:12:64:66:16
...

As an add_list usage example, lets add these MAC addresses to the list: 11:11:11:11:11:11,
22:22:22:22:22:22, 33:33:33:33:33:33

uci add_list wireless.@wifi-iface[0].maclist=11:11:11:11:11:11
uci add_list wireless.@wifi-iface[0].maclist=22:22:22:22:22:22
uci add_list wireless.@wifi-iface[0].maclist=33:33:33:33:33:33
uci commit wireless
/etc/init.d/wireless restart

Notice that you have to use a separate command for adding each value and as with uci set you have
to use uci commit and luci-reload in order for the changes to take effect.

Extensive example

With all that we have learned lets try a more complicated example: lets you want to create an
OpenVPN server. The server will be called MyServer, will use a TUN type interface and TLS
authentication. In order to create this server we will first have to create a section for the server in

the openvpn config:

uci add openvpn server_MyServer
uci set openvpn.server_MyServer=openvpn

The first line creates a section called server_MyServer, the second line specifies the section type, in
this case - openvpn. Now lets add the rest of the configurations:

uci set openvpn.server_MyServer.persist_key=1
uci set openvpn.server_MyServer.port=1194
uci set openvpn.server_MyServer.keepalive=10 120
uci set openvpn.server_MyServer.persist_tun=1
uci set openvpn.server_MyServer.status=/tmp/openvpn-
status_server_MyServer.log
uci set openvpn.server_MyServer.verb=5
uci set openvpn.server_MyServer.proto=udp
uci set openvpn.server_MyServer.dev=tun_s_MyServer
uci set openvpn.server_MyServer.enable=1
uci set openvpn.server_MyServer.comp_lzo=yes
uci set openvpn.server_MyServer.cipher=BF-CBC
uci set openvpn.server_MyServer._auth=tls
uci set openvpn.server_MyServer._tls_cipher=all
uci set openvpn.server_MyServer.server=10.0.0.0 255.255.255.0
uci set
openvpn.server_MyServer.ca=/lib/uci/upload/cbid.openvpn.server_MyServer.ca
uci set
openvpn.server_MyServer.cert=/lib/uci/upload/cbid.openvpn.server_MyServer.cer
t
uci set
openvpn.server_MyServer.key=/lib/uci/upload/cbid.openvpn.server_MyServer.key
uci set
openvpn.server_MyServer.dh=/lib/uci/upload/cbid.openvpn.server_MyServer.dh
uci set openvpn.server_MyServer.client_config_dir=/etc/openvpn/ccd
uci add_list openvpn.server_MyServer.push="route 192.168.1.0 255.255.255.0"
uci add_list openvpn.server_MyServer.push="route 192.168.56.0
255.255.255.0'

And don't forget to uci commit and restart the daemon:

uci commit openvpn
/etc/init.d/openvpn restart

A few notes about the configuration:

The options that go into an OpenVPN server are standard OpenWRT OpenVPN server options.1.
If you do not posses all the required information needed to create an OpenVPN server, visit
this OpenWRT guide: OpenVPN Setup Guide for Beginners.
Note that I added two values to the list named push. As mentioned before, when adding values2.
to list-type parameters use separate commands for separate values. If the value has a space in
it (as in the example above) use quotation marks around the value ("<value>").
Depending on your chosen authentication, the OpenVPN server instance might use certificate3.
files for authentication with clients. A TLS server, as in our case, uses Certificate authority

https://wiki.openwrt.org/doc/howto/vpn.openvpn

(.crt), Server certificate (.crt), Server key (.key) and Diffie Hellman Parameters (.pem)
files for authentication. A Static Key server uses a Static Key (.key) file for authentication. In
the example above I had all the files upload beforehand to /lib/uci/upload, so the commands
that I used only provided the server's config with the paths to the files. When creating your
own OpenVPN server you will have to generate your own certificates and upload the to
/lib/uci/upload (the default directory for certificates) or somewhere else, but make sure to
specify the correct path. To upload files to the router use the scp command if you're working
with a Linux type OS or use software called WinSCP if you are using Windows OS. Or use
Easy-RSA to create certificates within the router. The newly created certificates will appear in
/etc/easy-rsa/keys. You can create certificates with these commands:

build-ca
build-dh
build-key-server my-server
build-key-pkcs12 my-client

Additional examples
If the examples and explanations provided above did not suffice, we are providing this section of
some additional ones in hopes to give you a better grasp of the syntax of UCI command usage.

Site Blocking

This example will provide instructions on how to enable RUT routers' Site Blocking feature and how
to add hostnames to the Blacklist or Whitelist using only UCI commands. For the sake of our
example lets say that you want to create a Blacklist that excludes access to all sites contained within
the list. The sites in question are www.facebook.com, www.youtube.com and 9gag.com.

To achieve such a task, the first relevant piece of required information is the config name,
hostblock, where all the necessary configuration settings are stored. The next important thing to
know is that each different website must be stored in a separate section of the type block. So we'll
need to create a new section and enable each added element. Lets start:

First element:

uci add hostblock block
uci set hostblock.@block[0].host=www.facebook.com
uci set hostblock.@block[0].enabled=1

Second element:

uci add hostblock block
uci set hostblock.@block[1].host=www.youtube.com
uci set hostblock.@block[1].enabled=1

Third element:

uci add hostblock block
uci set hostblock.@block[2].host=9gag.com
uci set hostblock.@block[2].enabled=1

Enabling Site Blocking:

uci set hostblock.config.enabled=1

Final steps:

uci commit hostblock
/etc/init.d/hostblock restart

The first-third steps add hostnames of the websites to be blocked, which are saved under the option
host. Each of the first three elements also need to be enabled, therefore, the option enabled is set to
1 next to each host. The fourth step is for enabling the Site Blocking service (by setting the option
enabled in section config to 1).

DHCP Server

This example will provide instructions on how configure RUT routers' DHCP Server using only UCI
commands. For the sake of the example lets say that you want to change the dhcp range to
192.168.1.2 - 192.168.1.200 and the lease time to 30 minutes

To achieve such a task, the first relevant piece of required information is the config name, dhcp,
where all the necessary configuration settings are stored. Lets start:

Setting start address and limit:

uci set dhcp.lan.start=2
uci set dhcp.lan.limit=199

Setting lease time

uci set dhcp.lan.leasetime=30m

Final steps:

uci commit dhcp
/etc/init.d/dhcp restart

The first step sets the start address to 2 and the limit of addresses to 199. The value of the start
option is associated with the last section of an IP address (if start value is 2 then the starting IP
address is 192.168.1.2(provided that the router's LAN IP is in the 192.168.1.0/24 network)), the
value of the limit option denotes how many IP addresses can be leased out starting from and
including the the start address. Then the second step is used to set the lease time. The letter option
specifies the unit of time measurement (either m for minutes or h for hours). The time option
specifies number of minutes (or hours in other cases) and the leasetime option is just the
representation (nonetheless, it's still mandatory) of the previous two values, i.e., 30m - thirty
minutes.

Mobile Data Limit

This example will provide instructions on how configure Mobile Data Limit and SMS Warning on
RUT routers' using only UCI commands. For the sake of the example lets say that you want to set up
a data limit of 1 GB with the limit counter restarting everyday at 10 a.m. and an SMS Warning that
sends out a message when the 800 MB threshold is reached that also restarts everyday at 10 a.m.

To achieve such a task, the first relevant piece of required information is the config name,
quota_limit, where all the necessary configuration settings are stored:

Enabling Mobile Data Limit and SMS Warning:

uci set quota_limit.mob1s1a1=interface
uci set quota_limit.mob1s1a1.enabled='1'
uci set quota_limit.mob1s1a1.ifname='mob1s1a1'
uci set quota_limit.mob1s1a1.reset_hour='10'
uci set quota_limit.mob1s1a1.sim='1'
uci set quota_limit.mob1s1a1.data_limit='10000'
uci set quota_limit.mob1s1a1.enable_warning='1'
uci set quota_limit.mob1s1a1.period='1'
uci set quota_limit.mob1s1a1.warning_limit='8000'
uci set quota_limit.mob1s1a1.warning_num='+37012345678'

Commit changes and restart the daemon

uci commit quota_limit
/etc/init.d/quota_limit restart

Disabling / Deleting configuration

Let us take the above example and disable the data limit using uci. For this, we simply need to
change the "enabled" value to '0':

uci set quota_limit.mob1s1a1.enabled='0'
uci commit quota_limit
/etc/init.d/quota_limit restart

If you wish to delete the whole configuration, uci delete can be used. Let us delete the entire block
of configuration of mob1s1a1 interface:

uci delete quota_limit.mob1s1a1
uci commit quota_limit
/etc/init.d/quota_limit restart

External links
https://wiki.openwrt.org/doc/uci?do= - OpenWRT wiki page on the UCI system
https://www.chiark.greenend.org.uk/~sgtatham/putty/latest.html - PuTTY downloads page

https://wiki.openwrt.org/doc/uci?do=
https://www.chiark.greenend.org.uk/~sgtatham/putty/latest.html

