Template:Networking rutxxx configuration example JSON RPC commands: Difference between revisions
Oscar.morao (talk | contribs) No edit summary |
Oscar.morao (talk | contribs) No edit summary |
||
Line 183: | Line 183: | ||
The command used is ''uci set'' (highlighted in red). The config file name is '''simcard''', section '''sim1''', options '''mtu''' and '''service''' (configs, sections and options highlighted in orange). The response shown above is a positive response, but don't forget to execute ''uci commit'' and ''luci-reload'' afterwards or else your changes will not take effect. The usage of ''uci commit'' and ''luci-reload'' commands is described '''[[Monitoring_via_JSON-RPC#Setting_router_parameters|here]]''' (for Windows) and '''[[Monitoring_via_JSON-RPC#Setting_router_parameters_2|here]]''' (for Linux). | The command used is ''uci set'' (highlighted in red). The config file name is '''simcard''', section '''sim1''', options '''mtu''' and '''service''' (configs, sections and options highlighted in orange). The response shown above is a positive response, but don't forget to execute ''uci commit'' and ''luci-reload'' afterwards or else your changes will not take effect. The usage of ''uci commit'' and ''luci-reload'' commands is described '''[[Monitoring_via_JSON-RPC#Setting_router_parameters|here]]''' (for Windows) and '''[[Monitoring_via_JSON-RPC#Setting_router_parameters_2|here]]''' (for Linux). | ||
[[Category:{{{name}}} Configuration Examples]] | [[Category:{{{name}}} Configuration Examples]] |
Revision as of 23:09, 13 April 2020
Some Additional Commands
If the commands found in the guide above did not suffice your needs, this section provides a list of additional ones. The commands presented in this section will be for both Linux and Windows operating systems. They should be used as syntax examples for your own purposes.
WiFi clients list
This command returns a list of devices connected to your WLAN and some additional information about the connection.
Windows:
{ "jsonrpc": "2.0", "id": 1, "method": "call", "params": [ "86fc586fa1471622473434ff0176fd66", "iwinfo", "assoclist", { "device":"wlan0" } ] }
Linux:
curl -d "{ \"jsonrpc\": \"2.0\", \"id\": 1, \"method\": \"call\", \"params\": [ \"86fc586fa1471622473434ff0176fd66\", \"iwinfo\", \"assoclist\", {\"device\":\"wlan0\"} ] }" http://192.168.1.1/ubus
The response should look something like this:
{"jsonrpc":"2.0","id":1,"result":[0,{"results": [{"mac":"E4:02:9B:88:09:AA","signal":-32,"noise":-88,"inactive":10,"rx": {"rate":1000,"mcs":0,"40mhz":false,"short_gi":false},"tx": {"rate":72200,"mcs":7,"40mhz":false,"short_gi":true}}, {"mac":"D8:C7:71:47:90:E1","signal":-12,"noise":-88,"inactive":400,"rx": {"rate":1000,"mcs":0,"40mhz":false,"short_gi":false},"tx": {"rate":72200,"mcs":7,"40mhz":false,"short_gi":true}}]}]}
To obtain these values, the Linux iwinfo command and assoclist parameter (red) are used. Highlighted in green are the devices connected to the router via WiFi as identified by their MAC addresses. The response information about the connection with the device, such as signal strength, noise, time of inactivity (idle time), rx, tx rate, etc., is highlighted in blue.
WiFi information
This command returns information on your WiFi Access Point.
Windows:
{ "jsonrpc": "2.0", "id": 1, "method": "call", "params": [ "a70ceeba344b6046625d8bcec132796c", "iwinfo", "info", { "device":"wlan0" } ] }
Linux:
curl -d "{ \"jsonrpc\": \"2.0\", \"id\": 1, \"method\": \"call\", \"params\": [ \"a70ceeba344b6046625d8bcec132796c\", \"iwinfo\", \"info\", {\"device\":\"wlan0\"} ] }" http://192.168.1.1/ubus
Response:
{"jsonrpc":"2.0","id":1,"result":[0, {"phy":"phy0","ssid":"HAL9000","bssid":"00:1E:42:16:D6:68","country":"00","mode":"Master","channel":6,"frequency":2437,"txpower":20, "quality":22,"quality_max":70,"signal":22,"noise":-61,"bitrate":72200,"encryption": {"enabled":false},"hwmodes":["b","g","n"],"hardware":{"name":"Generic MAC80211"}}]}
As with the clients list command described above, to obtain this information the Linux iwinfo command is used, but this time with the info parameter (red). The relevant information, such as WiFi SSID, WiFi MAC address, WiFi channel, Encryption type, etc., is highlighted in blue
Manufacturing information
This command returns information about the device's manufacturing details like device's Product Code, Serial Number MAC Address, etc.
Windows:
{ "jsonrpc": "2.0", "id": 1, "method": "call", "params": [ "805725a19ab0fba6c2b44ecf2f952fb9","file", "exec", { "command":"mnf_info", "params":["name", "sn", "mac"] } ] }
Linux:
curl -d "{ \"jsonrpc\": \"2.0\", \"id\": 1, \"method\": \"call\", \"params\": [ \"805725a19ab0fba6c2b44ecf2f952fb9\",\"file\", \"exec\",{ \"command\":\"mnf_info\", \"params\":[\"name\", \"sn\", \"mac\"] } ] }" http://192.168.1.1/ubus
Response:
{"jsonrpc":"2.0","id":1,"result":[0,{"code":0,"stdout":"RUT950HG12C0\n1367435694\n001e4216d666\n"}]}
To obtain the manufacturing information the mnf_info (highlighted in red) command is used. In this case a query was sent asking for the device's Product Code (name), Serial Number (sn) and MAC Address (mac) (highlighted in red in the query; returned values highlighted in blue). Using mnf_info, you can "ask" the router for any type of manufacturing information. Here is the list of possible mnf_info parameters:
- mac - returns the router's LAN MAC address
- maceth - returns the router's WAN MAC address
- name - returns the router's Product Code
- wps - returns the router's WPS PIN number
- sn - returns the router's Serial number
- batch - returns the router's Batch number
- hwver - returns the router's Hardware Revision number
- simpin - returns the router's SIM card's PIN (as it is specified in the Mobile section)
- blver - returns the router's Bootloader version
GPS Data
This command returns the device's GPS GPS latitude and longitude.
Windows:
{
"jsonrpc": "2.0", "id": 1, "method": "call", "params":
[
"456f77f6b686bf5972daa3a26bee60b0","file", "exec",
{
"command":"gpsctl", "params":["-ix"]
}
]
}
Linux:
Firmware number
This command returns the device's Firmware version number.
Windows:
{ "jsonrpc": "2.0", "id": 1, "method": "call", "params": [ "85ea4cb00398d8387b22d8fa6f75f753", "file", "read", { "path":"/etc/version" } ] }
Linux:
curl -d "{ \"jsonrpc\": \"2.0\", \"id\": 1, \"method\": \"call\", \"params\": [ \"85ea4cb00398d8387b22d8fa6f75f753\",\"file\", \"read\",{ \"path\":\"/etc/version\"} ] }" http://192.168.1.1/ubus
Response:
{"jsonrpc":"2.0","id":1,"result":[0,{"data":"RUT9XX_R_00.05.00.5\n"}]}
This command (file, read, highlighted in red) is an alternative to the Linux cat command we see used in the Getting router paramaters section of this guide. All you need is to specify the path (in this case /etc/version, highlighted in red) to the file that you wish to read.
Reboot
Windows:
{ "jsonrpc":"2.0","id":1,"method":"call","params": [ "5cd4b143b182c07bc578ae3310d6280e","file","exec", { "command":"reboot","params":["config"] } ] }
Linux:
curl -d "{\"jsonrpc\":\"2.0\",\"id\":1,\"method\":\"call\",\"params\":[\"5cd4b143b182c07bc578ae3310d6280e\",\"file\",\"exec\",{\"command\":\"reboot\",\"params\":[\"config\"]}]}" http://192.168.1.1/ubus
Response:
The success response for this command is an empty message. If the response contains no data, the command was executed successfully.
Set SIM card information
In this last example we'll try to change the mobile connection's MTU and Service mode values.
Windows:
{ "jsonrpc":"2.0", "id":1, "method":"call", "params": [ "558a9b03c940e52f373f8c02498952e3", "uci", "set", { "config":"simcard", "type":"sim1", "match": { "service":"auto", "mtu":"1500" }, "values": { "service":"lte-only", "mtu":"1476" } } ] }
Linux:
curl -d "{\"jsonrpc\":\"2.0\", \"id\":1, \"method\":\"call\", \"params\":[\"558a9b03c940e52f373f8c02498952e3\", \"uci\", \"set\", {\"config\":\"simcard\", \"type\":\"sim1\", \"match\":{\"service\":\"auto\", \"mtu\":\"1500\"}, \"values\":{\"service\":\"lte-only\", \"mtu\":\"1476\"} } ] }" http://192.168.1.1/ubus
Response:
{"jsonrpc":"2.0","id":1,"result":[0]}
The command used is uci set (highlighted in red). The config file name is simcard, section sim1, options mtu and service (configs, sections and options highlighted in orange). The response shown above is a positive response, but don't forget to execute uci commit and luci-reload afterwards or else your changes will not take effect. The usage of uci commit and luci-reload commands is described here (for Windows) and here (for Linux).
[[Category:{{{name}}} Configuration Examples]]