
https://wiki.teltonika-networks.com/view/Monitoring_via_JSON-RPC_windows_RutOS

Monitoring via JSON-RPC windows RutOS
Main Page > General Information > Configuration Examples > Router control and monitoring > Monitoring via JSON-
RPC windows RutOS

The information on this page is updated in accordance with the 00.07.4 firmware version .

Contents

1 Introduction
2 Configuration overview and prerequisites
3 Using JSON-RPC (Windows)

3.1 HTTP POST
3.2 Obtaining a session ID
3.3 Getting router parameters

3.3.1 Getting signal levels
3.3.2 Getting Network Config

3.4 Setting router parameters
3.4.1 UCI SET
3.4.2 UCI COMMIT
3.4.3 RELOAD_CONFIG
3.4.4 Setting Multiple Parameters

4 Some Additional Commands
4.1 WiFi clients list
4.2 WiFi information
4.3 Manufacturing information
4.4 GPS Data
4.5 Firmware number
4.6 Reboot
4.7 Set SIM card information

5 See Also
6 External links

Introduction
JSON-RPC is a remote procedure call protocol encoded in JSON. It is a very simple protocol (and
very similar to XML-RPC), defining only a few data types and commands. JSON-RPC allows for
notifications (data sent to the server that does not require a response) and for multiple calls to be
sent to the server which may be answered out of order.

This article provides a guide on how to use JSON-RPC on RUTxxx routers.

Configuration overview and prerequisites
Before we begin, let's overview the configuration that we are attempting to achieve and the

https://wiki.teltonika-networks.com/view/Main_Page
https://wiki.teltonika-networks.com/view/General_Information
https://wiki.teltonika-networks.com/view/Configuration_Examples
https://wiki.teltonika-networks.com/view/Router_control_and_monitoring
https://wiki.teltonika-networks.com/view/FW_%26_SDK_Downloads
#Using_JSON-RPC_.28Windows.29
#Using_JSON-RPC_.28Windows.29
#Using_JSON-RPC_.28Windows.29


prerequisites that make it possible.
Prerequisites:

A PC with HTTP request software.
An Internet connection. (This example is based in a local configuration, but also can be used
via wired WAN or a remote installation with Public IP)
One RUTxxx series router.

Configuration scheme: 

Using JSON-RPC (Windows)
This section describes how to use JSON-RPC with a Windows operating system. If you're using a
Linux OS, jump to this section of the guide: JSON-RPC with Linux

HTTP POST

To login to the router via JSON-RPC you will need software capable of sending HTTP POST
requests to the router. The simplest solution is to install an extension similar to Chrome "Postman"
(download link here).
If you're using Firefox you can use "RESTClient" (download link here).Once you've installed the
add-on, Click it to launch it:

Obtaining a session ID

First, you must obtain a Session ID. In order to do so, you must send a HTTP POST request to the
router asking for it.

1. Enter the router's IP address into the URL field http://192.168.1.1/ubus (use LAN IP for local
access, WAN IP for remote access),
2. Open the Body section,
3. Select raw,
4. Then paste the following command into the Body or Content to send field:

{
    "jsonrpc":"2.0", "id":1, "method":"call", "params":
    [
        "00000000000000000000000000000000", "session", "login",
        {
            "username":"admin", "password":"admin01"
        }
    ]
}

Note: The section highlighted in orange is the router's admin password which by default is admin01.
Replace this part with your own router's password.

5. Once you have everything in order, click Send,

http://wiki.teltonika-networks.com/view/File:Scheme02.jpg
http://wiki.teltonika-networks.com/index.php?title=Place_Holder&action=edit&redlink=1
https://chrome.google.com/webstore/detail/postman/fhbjgbiflinjbdggehcddcbncdddomop
https://addons.mozilla.org/es/firefox/addon/restclient/
http://192.168.1.1/ubus


6. The output should contain the Session ID.

Copy the Session ID since you'll be needing it when issuing other commands to the router.

NOTE: if later on your commands stop working and you get a Response like this:

{
   "jsonrpc": "2.0",
   "id": 1,
   "error": {
       "code": -32002,
       "message": "Access denied"
   }
}

It probably means that your Session ID has expired so you'll need to ask for a new one. A Session
ID expires after 300 seconds (5 minutes).

Getting router parameters

Now that you have obtained a Session ID, you can issue commands to the router. Let's start with
commands that return information about the router.

Getting signal levels

{
    "jsonrpc": "2.0", "id": 1, "method": "call", "params":
    [
        "bde01a2da4a6f4a515bb9466f90bc58a", "file", "exec",
        {
            "command":"gsmctl",
            "params":
            [
                "-q"
            ]
        }
    ]
}

The test highlighted in red is your Session ID, and highlighted in orange are the command and the
parameter. In this example, we're using a gsmctl -q command that returns the router's signal
levels.

Look for stdout in the post response: "stdout": "RSSI: -54\nRSRP: -87\nSINR: 8\nRSRQ: -12\n".
This tells us that the router's current signal strength levels.

http://wiki.teltonika-networks.com/view/File:Postman_login.png
http://wiki.teltonika-networks.com/view/File:Postman_gsmct_signal.png


Getting Network Config

You can issue many SSH commands in a similar manner. For example, if you wish to check the
network the command to do so would be:

{
    "jsonrpc": "2.0", "id": 1, "method": "call", "params":
    [
        "a74c8e07646f0da2bfddce35bf3de1f3", "file", "exec",
        {
            "command":"cat",
            "params":
            [
                "/etc/config/network"
            ]
        }
    ]
}

Again the command and the parameter are highlighted in orange. In this case the cat command is
used to view the contents of the /etc/config/network file. The Response is:

Setting router parameters

To set parameters, is necessary to use three commands, they are set, commit and reload_config

The First one is used to set router parameters
The second one is used to commit the changes from RAM to flash memory
The third one is used to the changes take effect

We'll not go into detail on UCI commands in this article, but you can check out our UCI command
usage guide for detailed examples.

UCI SET

The uci set command is used to set router parameters.

As an example, let's try to change the router's WiFi SSID. The command to do so looks like this:

{
    "jsonrpc":"2.0", "id":1, "method":"call", "params":
    [

http://wiki.teltonika-networks.com/view/File:Postman_network_config.png
http://wiki.teltonika-networks.com/view/UCI_command_usage
http://wiki.teltonika-networks.com/view/UCI_command_usage


        "9704f676709d9dedc98d7718c4e3e7d2", "uci", "set",
        {
            "config":"wireless",
            "type":"wifi-iface",
            "match":
            {
                "ssid": "Teltonika_Router"
            },
            "values":
            {
                "ssid":"9999"
            }
        }
    ]
}

The sections highlighted in orange describes the config file's name and section. (In this case,
wireless config and wifi-iface section).
Highlighted in red is the option of the config section that you wish to change. (In this case,
the router's SSID.)
Finally, highlighted in green is the value that will replace the old value. (In this case, it
change the router's SSID to 9999.)

If the issued command was a success, you should see a Response like this:

UCI COMMIT

When you apply changes using uci set, you're only changing a copy of the file that is located in the
router's RAM memory. In order for the changes to take place, you'll need to issue a uci commit
command that will commit the changes from RAM to flash memory. Continuing from the example
above, let's commit the Wireless SSID changes. The JSON-RPC command to do so looks like this:

{
    "jsonrpc":"2.0", "id":1, "method":"call", "params":
    [
        "9704f676709d9dedc98d7718c4e3e7d2", "uci", "commit",
        {
            "config":"wireless"
        }
    ]
}

Note: when committing changes, you will need to specify the name of the file where the changes
took place (In this case, wireless config, which is highlighted in orange).

If the commit was successful, you should see the same message as before:

http://wiki.teltonika-networks.com/view/File:Postman_uci_set_wireless.png
http://wiki.teltonika-networks.com/view/File:Postman_uci_commit.png


RELOAD_CONFIG

The last step to take in order for the changes to take effect is the reload_config command which
restarts all of the router's services. The reload_config command looks like this:

{
    "jsonrpc": "2.0", "id": 1, "method": "call", "params":
    [
        "428a9fa57f1a391db0bd1b865fa16bb5", "file", "exec",
        {
            "command": "reload_config"
        }
    ]
}

The command itself is highlighted in orange.

Navigate to the router's WebUI → Network → Wireless and see if the SSID has changed.

Before

After

Setting Multiple Parameters

This next example describes how to set multiple parameters in a single config file, in this case,
changes the default DHCP server values with custom ones:

{
    "jsonrpc":"2.0", "id":1, "method":"call", "params":
    [
        "558a9b03c940e52f373f8c02498952e3", "uci", "set",
        {
            "config":"dhcp", "type":"dhcp", "match":
            {
                "start":"100",
                "limit":"150",
                "leasetime":"12h"
            },
            "values":
            {
                "start":"75",

http://wiki.teltonika-networks.com/view/File:Postman_uci_reload.png
http://wiki.teltonika-networks.com/view/File:Postmna_ssid_before.png
http://wiki.teltonika-networks.com/view/File:Webui_ssid_changed.png


                "limit":"100",
                "leasetime":"6h"
            }
        }
    ]
}

The command above will change the router's DHCP Server's current Start address, Address limit
and Lease time values (highlighted in orange) to custom values provided in the "values" section
of the command (highlighted in green).

Before

After

Note: Remember always to use the commands in the order (set, commit, reload_config)

Some Additional Commands
If the commands found in the guide above did not suffice your needs, this section provides a list of
additional ones. The commands presented in this section will be for both Linux and Windows
operating systems. They should be used as syntax examples for your own purposes.

WiFi clients list

This command returns a list of devices connected to your WLAN and some additional information
about the connection.

Windows:

{
    "jsonrpc": "2.0", "id": 1, "method": "call", "params":
    [
        "86fc586fa1471622473434ff0176fd66", "iwinfo", "assoclist",
        {
            "device":"wlan0"
        }
    ]
}

Linux:

curl -d "{ \"jsonrpc\": \"2.0\", \"id\": 1, \"method\": \"call\", \"params\":
[ \"86fc586fa1471622473434ff0176fd66\", \"iwinfo\", \"assoclist\",
{\"device\":\"wlan0\"} ] }" http://192.168.1.1/ubus

http://wiki.teltonika-networks.com/view/File:Postman_dhcp_before.png
http://wiki.teltonika-networks.com/view/File:Postman_dhcp_after.png


The response should look something like this:

{"jsonrpc":"2.0","id":1,"result":[0,{"results":
[{"mac":"E4:02:9B:XX:XX:XX","signal":-32,"noise":-88,"inactive":10,"rx":
{"rate":1000,"mcs":0,"40mhz":false,"short_gi":false},"tx":
{"rate":72200,"mcs":7,"40mhz":false,"short_gi":true}},
{"mac":"D8:C7:71:XX:XX:XX","signal":-12,"noise":-88,"inactive":400,"rx":
{"rate":1000,"mcs":0,"40mhz":false,"short_gi":false},"tx":
{"rate":72200,"mcs":7,"40mhz":false,"short_gi":true}}]}]}

To obtain these values, the Linux iwinfo command and assoclist parameter (red) are used.
Highlighted in green are the devices connected to the router via WiFi as identified by their MAC
addresses. The response information about the connection with the device, such as signal strength,
noise, time of inactivity (idle time), rx, tx rate, etc., is highlighted in blue.

WiFi information

This command returns information on your WiFi Access Point.

Windows:

{
    "jsonrpc": "2.0", "id": 1, "method": "call", "params":
    [
        "a70ceeba344b6046625d8bcec132796c", "iwinfo", "info",
        {
            "device":"wlan0"
        }
    ]
}

Linux:

curl -d "{ \"jsonrpc\": \"2.0\", \"id\": 1, \"method\": \"call\", \"params\":
[ \"a70ceeba344b6046625d8bcec132796c\", \"iwinfo\", \"info\",
{\"device\":\"wlan0\"} ] }" http://192.168.1.1/ubus

Response:

{"jsonrpc":"2.0","id":1,"result":[0,
{"phy":"phy0","ssid":"HAL9000","bssid":"00:1E:42:XX:XX:XX","country":"00","mo
de":"Master","channel":6,"frequency":2437,"txpower":20,
"quality":22,"quality_max":70,"signal":22,"noise":-61,"bitrate":72200,"encryp
tion":
{"enabled":false},"hwmodes":["b","g","n"],"hardware":{"name":"Generic
MAC80211"}}]}

As with the clients list command described above, to obtain this information the Linux iwinfo
command is used, but this time with the info parameter (red). The relevant information, such as
WiFi SSID, WiFi MAC address, WiFi channel, Encryption type, etc., is highlighted in blue



Manufacturing information

This command returns information about the device's manufacturing details like device's Product
Code, Serial Number MAC Address, etc.

Windows:

{
    "jsonrpc": "2.0", "id": 1, "method": "call", "params":
    [
        "805725a19ab0fba6c2b44ecf2f952fb9","file", "exec",
        {
            "command":"mnf_info", "params":["--name", "--batch"]
        }
    ]
}

Linux:

curl -d "{ \"jsonrpc\": \"2.0\", \"id\": 1, \"method\": \"call\", \"params\":
[ \"805725a19ab0fba6c2b44ecf2f952fb9\",\"file\", \"exec\",{
\"command\":\"mnf_info\", \"params\":[\"--name\", \"--batch\"] } ] }"
http://192.168.1.1/ubus

Response:

{"jsonrpc":"2.0","id":1,"result":[0,{"code":0,"stdout":""RUT955003XXX\n0105\n
001e4216d666\n"}]}

To obtain the manufacturing information the mnf_info (highlighted in red) command is used. In this
case a query was sent asking for the device's Product Code (name), Serial Number (sn) and MAC
Address (mac) (highlighted in red in the query; returned values highlighted in blue). Using mnf_info,
you can "ask" the router for any type of manufacturing information. Here is the list of possible
mnf_info parameters:

--mac - returns the router's LAN MAC address
--maceth - returns the router's WAN MAC address
--name - returns the router's Product Code
--wps - returns the router's WPS PIN number
--sn - returns the router's Serial number
--batch - returns the router's Batch number
--hwver - returns the router's Hardware Revision number
--simpin - returns the router's SIM card's PIN (as it is specified in the Mobile section)
--blver - returns the router's Bootloader version

GPS Data

This command returns the device's GPS GPS latitude and longitude.

http://wiki.teltonika-networks.com/view/RUT955_Mobile


Windows:

{
    "jsonrpc": "2.0", "id": 1, "method": "call", "params":
    [
      "456f77f6b686bf5972daa3a26bee60b0","file", "exec",
         {
           "command":"gpsctl", "params":["-ix"]
         }
    ]
}

Linux:

curl -d
"{\"jsonrpc\":\"2.0\",\"id\":1,\"method\":\"call\",\"params\":[\"5363304b3ed4
ee0806f101295fc52e93\",\"file\",\"exec\",{\"command\":\"gpsctl\",\"params\":[
\"-ix\"]}]}" http://192.168.1.1/ubus

Response:

{"jsonrpc":"2.0","id":1,"result":[0,{"code":0,"stdout":"-23.612625\n-46.62635
5\n"}]}

The blue part in the code are the Latitude and Longitude.

Firmware number

This command returns the device's Firmware version number.

Windows:

{
    "jsonrpc": "2.0", "id": 1, "method": "call", "params":
    [
        "85ea4cb00398d8387b22d8fa6f75f753", "file", "read",
        {
            "path":"/etc/version"
        }
    ]
}

Linux:

curl -d "{ \"jsonrpc\": \"2.0\", \"id\": 1, \"method\": \"call\", \"params\":
[ \"85ea4cb00398d8387b22d8fa6f75f753\",\"file\", \"read\",{
\"path\":\"/etc/version\"} ] }" http://192.168.1.1/ubus

Response:

{"jsonrpc":"2.0","id":1,"result":[0,{"data":"RUTXXX_R_00.07.02.0\n"}]}



This command (file, read, highlighted in red) is an alternative to the Linux cat command. All you
need is to specify the path (in this case /etc/version, highlighted in red) to the file that you wish to
read.

Reboot

Windows:

{
    "jsonrpc":"2.0","id":1,"method":"call","params":
    [
        "5cd4b143b182c07bc578ae3310d6280e","file","exec",
        {
            "command":"reboot","params":["config"]
        }
    ]
}

Linux:

curl -d
"{\"jsonrpc\":\"2.0\",\"id\":1,\"method\":\"call\",\"params\":[\"5cd4b143b182
c07bc578ae3310d6280e\",\"file\",\"exec\",{\"command\":\"reboot\",\"params\":[
\"config\"]}]}" http://192.168.1.1/ubus

Response:

The success response for this command is an empty message. If the response contains no data, the
command was executed successfully.

Set SIM card information

In this last example we'll try to change the mobile connection's MTU and Service mode values.

Windows:

{
    "jsonrpc":"2.0", "id":1, "method":"call", "params":
    [
        "558a9b03c940e52f373f8c02498952e3", "uci", "set",
        {
            "config":"simcard", "type":"sim1", "match":
            {
                "service":"auto",
                "mtu":"1500"
            },
            "values":
            {



                "service":"lte-only",
                "mtu":"1476"
            }
        }
    ]
}

Linux:

curl -d "{\"jsonrpc\":\"2.0\", \"id\":1, \"method\":\"call\",
\"params\":[\"558a9b03c940e52f373f8c02498952e3\", \"uci\", \"set\",
{\"config\":\"simcard\", \"type\":\"sim1\", \"match\":{\"service\":\"auto\",
\"mtu\":\"1500\"}, \"values\":{\"service\":\"lte-only\", \"mtu\":\"1476\"} }
] }" http://192.168.1.1/ubus

Response:

{"jsonrpc":"2.0","id":1,"result":[0]}

The command used is uci set (highlighted in red). The config file name is simcard, section sim1,
options mtu and service (configs, sections and options highlighted in orange). The response shown
above is a positive response, but don't forget to execute uci commit and reload_config afterwards or
else your changes will not take effect.

See Also
You may learn more about UCI commands here.

External links
https://www.postman.com/ - API software.

http://wiki.teltonika-networks.com/view/UCI_command_usage
https://www.postman.com/

