
https://wiki.teltonika-networks.com/view/RUT230_Monitoring_via_JSON-RPC_linux

RUT230 Monitoring via JSON-RPC linux
Main Page > RUT Routers > RUT230 > RUT230 Configuration Examples > RUT230 Monitoring via JSON-RPC linux

Contents

1 Introduction
2 Configuration overview and prerequisites
3 Enabling JSON-RPC
4 Using JSON-RPC (Linux)

4.1 Obtaining a session ID
4.2 Getting router parameters

4.2.1 Getting RSSI
4.3 Setting router parameters

4.3.1 UCI SET
4.3.2 UCI COMMIT
4.3.3 LUCI-RELOAD
4.3.4 Setting Multiple Parameters

5 Some Additional Commands
5.1 WiFi clients list
5.2 WiFi information
5.3 Manufacturing information
5.4 GPS Data
5.5 Firmware number
5.6 Reboot
5.7 Set SIM card information

Introduction
The information in this page is updated in accordance with the RUT2XX_R_00.01.12.1 firmware
version.

JSON-RPC is a remote procedure call protocol encoded in JSON. It is a very simple protocol (and
very similar to XML-RPC), defining only a few data types and commands. JSON-RPC allows for
notifications (data sent to the server that does not require a response) and for multiple calls to be
sent to the server which may be answered out of order.

This article provides a guide on how to use JSON-RPC on RUTxxx routers.

Configuration overview and prerequisites
Before we begin, let's overview the configuration that we are attempting to achieve and the
prerequisites that make it possible.
Prerequisites:

A PC for with a HTTP request software.

https://wiki.teltonika-networks.com/view/Main_Page
https://wiki.teltonika-networks.com/view/RUT_Routers
https://wiki.teltonika-networks.com/view/RUT230
https://wiki.teltonika-networks.com/view/RUT230_Configuration_Examples
#Using_JSON-RPC_.28Linux.29
#Using_JSON-RPC_.28Linux.29
#Using_JSON-RPC_.28Linux.29
http://wiki.teltonika-networks.com/images/e/ef/RUT2XX_R_00.01.12.1_WEBUI.bin

An Internet connection. (This example is based in a local configuration, but also can be used
via wired WAN or a remote installation with Public IP)
One RUTxxx series router.

Configuration scheme:

Enabling JSON-RPC
Before anything else, you'll need to make sure JSON-RPC is enabled on your router. JSON-RPC is
enabled by default, so if you haven't made any changes to the router's access settings, everything
should be in order. Otherwise you can check JSON-RPC status by logging into your router's WebUI
and navigating to System → Administration → Access Control. Look for the WebUI section; there
will be an Enable JSON RPC field. Make sure it is checked:

Using JSON-RPC (Linux)
This section describes how to use JSON-RPC commands with a Linux OS system. To find the guide
for Windows users, jump to this section: JSON-RPC on Widnows

Obtaining a session ID

To log in to the router via JSON-RPC you must first obtain a Session ID. To do so, you must send an
HTTP POST request to the router. Open the Linux Terminal app and execute this command:

curl -d "{ \"jsonrpc\": \"2.0\", \"id\": 1, \"method\": \"call\", \"params\":
[\"00000000000000000000000000000000\", \"session\", \"login\", {
\"username\": \"root\", \"password\": \"admin01\" }] }"
http://192.168.1.1/ubus

The section highlighted in orange is the router's admin password. admin01 is the default value,
replace it with your router's password. The address highlighted in green is the router's IP address.
Replace this value with your router's IP. If you're trying to reach the router from LAN, use the local
IP address (default: 192.168.1.1), if you're trying to reach the router from WAN, use the router's
WAN IP address.

The picture above depicts the process of obtaining a Session ID. The ID itself is encapsulated in a
blue rectangle. Copy this ID as you will need it to authenticate yourself when using other commands.

Getting router parameters

Now that you have obtained a Session ID, you can issue commands to the router. Lets start with
commands that return information about the router.

http://wiki.teltonika-networks.com/view/File:Scheme_RUT230.jpg
http://wiki.teltonika-networks.com/view/File:WEBUI_JSON.jpg
http://wiki.teltonika-networks.com/view/RUT230_Monitoring_via_JSON-RPC_windows
http://wiki.teltonika-networks.com/view/RUT230_LAN
http://wiki.teltonika-networks.com/view/RUT230_WAN
http://wiki.teltonika-networks.com/view/File:Configuration_examples_json-rpc_terminal_get_id.png

Getting RSSI

This is a command that returns the router's RSSI(signal strength) value:

curl -d "{ \"jsonrpc\": \"2.0\", \"id\": 1, \"method\": \"call\", \"params\":
[\"a74c8e07646f0da2bfddce35bf3de1f3\", \"file\", \"exec\", {
\"command\":\"gsmctl\", \"params\": [\"-q\"] }] }" http://192.168.1.1/ubus

Highlighted in red is the Session ID. Replace it with the Session ID that was provided to you.
Highlighted in orange is the command that we used for our query and highlighted in green is the
parameter for the command: gsmctl -q.

The picture bellow is a visual representation of this example. Encapsulated in a blue rectangle is the
answer to the gsmctl -q query: -73 dBm.

You can issue almost any Linux command in a similar manner. For example, if you wish to get a list
of file names contained in the config folder, the Linux command to do so would be ls /etc/config,
which, translated to JSON-RPC, would be:

curl -d "{\"jsonrpc\": \"2.0\", \"id\": 1, \"method\": \"call\", \"params\":
[\"a74c8e07646f0da2bfddce35bf3de1f3\", \"file\", \"exec\",
{\"command\":\"ls\", \"params\": [\"/etc/config\"] }] }"
http://192.168.1.1/ubus

The command is encapsulated in an orange rectangle and the answer - in a blue one.

Setting router parameters

This section will describe how to use uci set commands in order to set or change various router
parameters via JSON-RPC. For more general information about the usage and syntax of UCI
commands, check out our UCI command usage guide.

UCI SET

The uci set command is used to set router parameters. As an example, lets try to change the router's
LAN IP address. The command to do so looks like this:

curl -d "{\"jsonrpc\":\"2.0\", \"id\":1, \"method\":\"call\",
\"params\":[\"590bde71578da2fabfe77ba86c00e4e5\", \"uci\", \"set\", {
\"config\":\"network\", \"type\":\"interface\", \"match\":
{\"ipaddr\":\"192.168.1.1\"}, \"values\": {\"ipaddr\":\"192.168.56.1\"} }]
}" http://192.168.1.1/ubus

http://wiki.teltonika-networks.com/view/RSSI
http://wiki.teltonika-networks.com/view/File:Configuration_examples_json-rpc_terminal_gsmctl.png
http://wiki.teltonika-networks.com/view/File:Configuration_examples_json-rpc_terminal_ls.png
http://wiki.teltonika-networks.com/view/UCI_command_usage

The sections highlighted in orange describe the config file's name and section (in this case, network
config and interface section). Highlighted in red is the option in the config file that you wish to
change (in this case, the router's LAN IP address, ipaddr). Finally, highlighted in green is the value
that will to replace the old value (in this case, change the router's LAN IP address to 192.168.56.1).
If the command was issued successfully, you should see a Response like this:

UCI COMMIT

In order to commit the changes from RAM to flash memory, you must execute a uci commit
command. Continuing from the example above, lets commit the changes made to the network config.
The command to do so looks like this:

curl -d "{\"jsonrpc\":\"2.0\", \"id\":1, \"method\":\"call\",
\"params\":[\"9704f676709d9dedc98d7718c4e3e7d2\", \"uci\", \"commit\",
{\"config\":\"network\"}] }" http://192.168.1.1/ubus

When committing changes, you will need to specify the name of the file where the changes took
place (in this case, network, which is highlighted in orange). If the commit was successful, you
should see the same message as before:

{"jsonrpc":"2.0","id":1,"result":[0]}

LUCI-RELOAD

In order for the changes to take effect, use the luci-reload command which restarts all of the
router's services. The luci-reload command looks like this:

curl -d "{\"jsonrpc\":\"2.0\",\"id\":1, \"method\":\"call\",
\"params\":[\"428a9fa57f1a391db0bd1b865fa16bb5\", \"file\", \"exec\",
{\"command\": \"luci-reload\"}] }" http://192.168.56.1/ubus

The command itself is highlighted in orange.

Setting Multiple Parameters

This next example describes how to set multiple parameters in a single config file with one
command. Lets change the default configuration of the Ping Reboot function (ping_reboot config
file):

curl -d "{\"jsonrpc\":\"2.0\", \"id\":1, \"method\":\"call\",
\"params\":[\"558a9b03c940e52f373f8c02498952e3\", \"uci\", \"set\",
{\"config\":\"ping_reboot\", \"match\":{\"enable\":\"0\",
\"host\":\"8.8.8.8\", \"packet_size\":\"56\"}, \"values\":{\"enable\":\"1\",
\"host\":\"8.8.4.4\", \"packet_size\":\"64\"} }] }" http://192.168.1.1/ubus

http://wiki.teltonika-networks.com/view/File:Configuration_examples_json-rpc_terminal_uci_set.png

The command above will enable the Ping Reboot function, set the host to ping to 8.8.4.4 and ping
packet size to 64. The default values are highlighted in orange and the new ones are highlighted in
green.

Note: Remember always to use the commands in the order (set, commit, luci-reload)

Some Additional Commands
If the commands found in the guide above did not suffice your needs, this section provides a list of
additional ones. The commands presented in this section will be for both Linux and Windows
operating systems. They should be used as syntax examples for your own purposes.

WiFi clients list

This command returns a list of devices connected to your WLAN and some additional information
about the connection.

Windows:

{
 "jsonrpc": "2.0", "id": 1, "method": "call", "params":
 [
 "86fc586fa1471622473434ff0176fd66", "iwinfo", "assoclist",
 {
 "device":"wlan0"
 }
]
}

Linux:

curl -d "{ \"jsonrpc\": \"2.0\", \"id\": 1, \"method\": \"call\", \"params\":
[\"86fc586fa1471622473434ff0176fd66\", \"iwinfo\", \"assoclist\",
{\"device\":\"wlan0\"}] }" http://192.168.1.1/ubus

The response should look something like this:

{"jsonrpc":"2.0","id":1,"result":[0,{"results":
[{"mac":"E4:02:9B:88:09:AA","signal":-32,"noise":-88,"inactive":10,"rx":
{"rate":1000,"mcs":0,"40mhz":false,"short_gi":false},"tx":
{"rate":72200,"mcs":7,"40mhz":false,"short_gi":true}},
{"mac":"D8:C7:71:47:90:E1","signal":-12,"noise":-88,"inactive":400,"rx":
{"rate":1000,"mcs":0,"40mhz":false,"short_gi":false},"tx":
{"rate":72200,"mcs":7,"40mhz":false,"short_gi":true}}]}]}

To obtain these values, the Linux iwinfo command and assoclist parameter (red) are used.
Highlighted in green are the devices connected to the router via WiFi as identified by their MAC
addresses. The response information about the connection with the device, such as signal strength,
noise, time of inactivity (idle time), rx, tx rate, etc., is highlighted in blue.

WiFi information

This command returns information on your WiFi Access Point.

Windows:

{
 "jsonrpc": "2.0", "id": 1, "method": "call", "params":
 [
 "a70ceeba344b6046625d8bcec132796c", "iwinfo", "info",
 {
 "device":"wlan0"
 }
]
}

Linux:

curl -d "{ \"jsonrpc\": \"2.0\", \"id\": 1, \"method\": \"call\", \"params\":
[\"a70ceeba344b6046625d8bcec132796c\", \"iwinfo\", \"info\",
{\"device\":\"wlan0\"}] }" http://192.168.1.1/ubus

Response:

{"jsonrpc":"2.0","id":1,"result":[0,
{"phy":"phy0","ssid":"HAL9000","bssid":"00:1E:42:16:D6:68","country":"00","mo
de":"Master","channel":6,"frequency":2437,"txpower":20,
"quality":22,"quality_max":70,"signal":22,"noise":-61,"bitrate":72200,"encryp
tion":
{"enabled":false},"hwmodes":["b","g","n"],"hardware":{"name":"Generic
MAC80211"}}]}

As with the clients list command described above, to obtain this information the Linux iwinfo
command is used, but this time with the info parameter (red). The relevant information, such as
WiFi SSID, WiFi MAC address, WiFi channel, Encryption type, etc., is highlighted in blue

Manufacturing information

This command returns information about the device's manufacturing details like device's Product
Code, Serial Number MAC Address, etc.

Windows:

{
 "jsonrpc": "2.0", "id": 1, "method": "call", "params":

 [
 "805725a19ab0fba6c2b44ecf2f952fb9","file", "exec",
 {
 "command":"mnf_info", "params":["name", "sn", "mac"]
 }
]
}

Linux:

curl -d "{ \"jsonrpc\": \"2.0\", \"id\": 1, \"method\": \"call\", \"params\":
[\"805725a19ab0fba6c2b44ecf2f952fb9\",\"file\", \"exec\",{
\"command\":\"mnf_info\", \"params\":[\"name\", \"sn\", \"mac\"] }] }"
http://192.168.1.1/ubus

Response:

{"jsonrpc":"2.0","id":1,"result":[0,{"code":0,"stdout":"RUT950HG12C0\n1367435
694\n001e4216d666\n"}]}

To obtain the manufacturing information the mnf_info (highlighted in red) command is used. In this
case a query was sent asking for the device's Product Code (name), Serial Number (sn) and MAC
Address (mac) (highlighted in red in the query; returned values highlighted in blue). Using mnf_info,
you can "ask" the router for any type of manufacturing information. Here is the list of possible
mnf_info parameters:

mac - returns the router's LAN MAC address
maceth - returns the router's WAN MAC address
name - returns the router's Product Code
wps - returns the router's WPS PIN number
sn - returns the router's Serial number
batch - returns the router's Batch number
hwver - returns the router's Hardware Revision number
simpin - returns the router's SIM card's PIN (as it is specified in the RUT230_Mobile section)
blver - returns the router's Bootloader version

GPS Data

This command returns the device's GPS GPS latitude and longitude.

Windows:

{
 "jsonrpc": "2.0", "id": 1, "method": "call", "params":
 [
 "456f77f6b686bf5972daa3a26bee60b0","file", "exec",
 {

http://wiki.teltonika-networks.com/view/RUT230_Mobile

 "command":"gpsctl", "params":["-ix"]
 }
]
}

Linux:

curl -d
"{\"jsonrpc\":\"2.0\",\"id\":1,\"method\":\"call\",\"params\":[\"5363304b3ed4
ee0806f101295fc52e93\",\"file\",\"exec\",{\"command\":\"gpsctl\",\"params\":[
\"-ix\"]}]}" http://192.168.1.1/ubus

Response:

{"jsonrpc":"2.0","id":1,"result":[0,{"code":0,"stdout":"-23.612625\n-46.62635
5\n"}]}

The blue part in the code are the Latitude and Longitude.

Firmware number

This command returns the device's Firmware version number.

Windows:

{
 "jsonrpc": "2.0", "id": 1, "method": "call", "params":
 [
 "85ea4cb00398d8387b22d8fa6f75f753", "file", "read",
 {
 "path":"/etc/version"
 }
]
}

Linux:

curl -d "{ \"jsonrpc\": \"2.0\", \"id\": 1, \"method\": \"call\", \"params\":
[\"85ea4cb00398d8387b22d8fa6f75f753\",\"file\", \"read\",{
\"path\":\"/etc/version\"}] }" http://192.168.1.1/ubus

Response:

{"jsonrpc":"2.0","id":1,"result":[0,{"data":"RUT9XX_R_00.05.00.5\n"}]}

This command (file, read, highlighted in red) is an alternative to the Linux cat command. All you
need is to specify the path (in this case /etc/version, highlighted in red) to the file that you wish to
read.

Reboot

Windows:

{
 "jsonrpc":"2.0","id":1,"method":"call","params":
 [
 "5cd4b143b182c07bc578ae3310d6280e","file","exec",
 {
 "command":"reboot","params":["config"]
 }
]
}

Linux:

curl -d
"{\"jsonrpc\":\"2.0\",\"id\":1,\"method\":\"call\",\"params\":[\"5cd4b143b182
c07bc578ae3310d6280e\",\"file\",\"exec\",{\"command\":\"reboot\",\"params\":[
\"config\"]}]}" http://192.168.1.1/ubus

Response:

The success response for this command is an empty message. If the response contains no data, the
command was executed successfully.

Set SIM card information

In this last example we'll try to change the mobile connection's MTU and Service mode values.

Windows:

{
 "jsonrpc":"2.0", "id":1, "method":"call", "params":
 [
 "558a9b03c940e52f373f8c02498952e3", "uci", "set",
 {
 "config":"simcard", "type":"sim1", "match":
 {
 "service":"auto",
 "mtu":"1500"
 },
 "values":
 {
 "service":"lte-only",

 "mtu":"1476"
 }
 }
]
}

Linux:

curl -d "{\"jsonrpc\":\"2.0\", \"id\":1, \"method\":\"call\",
\"params\":[\"558a9b03c940e52f373f8c02498952e3\", \"uci\", \"set\",
{\"config\":\"simcard\", \"type\":\"sim1\", \"match\":{\"service\":\"auto\",
\"mtu\":\"1500\"}, \"values\":{\"service\":\"lte-only\", \"mtu\":\"1476\"} }
] }" http://192.168.1.1/ubus

Response:

{"jsonrpc":"2.0","id":1,"result":[0]}

The command used is uci set (highlighted in red). The config file name is simcard, section sim1,
options mtu and service (configs, sections and options highlighted in orange). The response shown
above is a positive response, but don't forget to execute uci commit and luci-reload afterwards or
else your changes will not take effect.

