
https://wiki.teltonika-networks.com/view/Template:Networking_rut_manual_modbus_legacy

Template:Networking rut manual modbus
legacy

The information in this page is updated in accordance with firmware version .

Note: this user manual page is for {{{name}}}'s old WebUI style available in earlier FW versions.
[[{{{name}}} Modbus|Click here]] for information based on the latest FW version.

Contents

1 Summary
2 Modbus TCP

2.1 Get Parameters
2.2 Set Parameters

3 Modbus TCP Master
3.1 Slave device configuration
3.2 Requests configuration
3.3 Alarm configuration

4 Modbus Data to Server
4.1 Data sender configuration

5 MQTT Gateway
5.1 Request messages
5.2 Response messages
5.3 Examples

6 See also

Summary
Modbus is a serial communications protocol. Simple and robust, it has become a de facto standard
communication protocol and is now a commonly available means of connecting industrial electronic
devices.

This chapter of the user manual provides an overview of the Modbus page for {{{name}}} devices.

Modbus TCP
Modbus TCP provides users with the possibility to set or get system parameters. The Modbus
daemon acts as slave device. That means it accepts connections from a master (client) and sends out
a response or sets some system related parameter in accordance with the given query.

The figure below is an example of the Modbus TCP window section and the table below provides
information on the fields contained in that window:

Field Value Description
Enable yes | no; default: none Turns Modbus TCP on or off.

Port integer [0..65535];
default: 502 TCP port used for Modbus communications.

Device ID integer [0..255];
default: 1

The device's Modbus slave ID. When set to 0, it will
respond to requests addressed to any ID.

Allow Remote
Access yes | no; default: no

Allows remote Modbus connections by adding an
exception to the device's firewall on the port specified
in the field above.

Keep persistent
connection yes | no; default: no If enabled, the connection will not be closed after

each completed Modbus request.

Connection timeout integer [1..60]; default:
0

Timeout in seconds after which the connection will be
closed. Use 0 to use default value provided by
Operating System.

Enable custom
register block yes | no; default: no Allow custom register block

Get Parameters

Modbus parameters are held within registers. Each register contains 2 bytes of information. For
simplification, the number of registers for storing numbers is 2 (4 bytes), while the number of
registers for storing text information is 16 (32 bytes). The register numbers and corresponding
system values are described in the table below:

{{Template: Networking_{{{name}}}_manual_modbus_modbus_tcp_get_parameters_table}}

Set Parameters

The Modbus daemon can also set some device parameters. These parameters and explanations on
how to use them are described in the table below:

{{Template: Networking_{{{name}}}_manual_modbus_modbus_tcp_set_parameters_table}}

* All ON/OFF commands only accept 0 and 1 values, which represent the following:

1 - ON
0 - OFF

Modbus TCP Master
A Modbus master device can request data from Modbus slaves. The Modbus TCP Master section is
used to configure Modbus TCP slaves. You can create a maximum of 10 slave configurations.

http://wiki.teltonika-networks.com/index.php?title=File:Networking_rut_manual_modbus_modbus_tcp.png&filetimestamp=20201120082355&

Slave device configuration

The figure below is an example of the Slave device configuration and the table below provides
information on the fields contained in that section:

Field Value Description
Enabled yes | no; default: no Turns communication with the slave device on or off.
Name string; default: none Slave device's name, used for easier management purposes.

Slave ID integer [0..255]; default:
none

Slave ID. Each slave in a network is assigned a unique
identifier ranging from 1 to 255. When the master requests
data from a slave, the first byte it sends is the Slave ID.
When set to 0, the slave will respond to requests addressed
to any ID.

IP address ip; default: none Slave device's IP address.

Port integer [0..65535]; default:
none Slave device's Modbus TCP port.

Period integer [1..6400]; default:
60 Interval at which requests are sent to the slave device.

Timeout integer [1..30]; default: 5 Maximum response wait time.

Requests configuration

A Modbus request is a way of obtaining data from Modbus slaves. The master sends a request to a
slave specifying the function code to be performed. The slave then sends the requested data back to
the Modbus master. You can create a maximum of 64 request configurations for each slave device.

Note: Modbus TCP Master uses Register Number instead of Register Address for pointing to a
register. For example, to request the Uptime of a device, you must use 2 in the First Register field.

The figure below is an example of the Requests configuration section and the table below provides
information contained in the fields of that section:

Field Value Description

Name string; default: Unnamed
Parameter

Request name. Used for easier management
purposes.

Data type

Hex | Ascii | 8bit INT | 8bit UINT |
16bit INT, high byte first | 16bit INT,
low byte first | 16bit UINT, high byte
first | 16bit UINT, low byte first |
32bit float, Byte order 1,2,3,4 | 32bit
float, Byte order 4,3,2,1 | 32bit float,
Byte order 2,1,4,3 | 32bit float, Byte
order 3,4,1,2; default: 16bit INT,
high byte first

How read data will be stored.

http://wiki.teltonika-networks.com/index.php?title=File:Networking_rut_manual_modbus_modbus_tcp_master_slave_device_configuration.png&filetimestamp=20201120082358&
http://wiki.teltonika-networks.com/index.php?title=File:Networking_rut_manual_modbus_modbus_tcp_master_request_configuration.png&filetimestamp=20201120082727&

Function 1 | 2 | 3 | 4 | 5 | 6 | 15 | 16; default: 3

A function code specifies the type of register
being addressed by a Modbus request. The
codes represent these functions:
• 1 - read Coil Status
• 2 - read Input Status
• 3 - read Holding Registers
• 4 - read Input Registers
• 5 - force Single Coil
• 6 - preset Single Register
• 15 - force Multiple Coils
• 16 - force Multiple Registers

First Register integer [1..65536]; default: 1

First Modbus register number from which
data will be read.
Note - {{{series}}} Modbus Master uses
register numbers, which value is +1 higher
than address value.

Number of
Registers integer [1..2000]; default: none Number of Modbus registers that will be read

during the request.
Enabled yes | no; default: no Turns the request on or off.

Test - (interactive button)

Generates a Modbus request according to
given parameters in order to test the request
configuration. You must first save the
configuration before you can use the Test
button.

Delete - (interactive button) Deletes the request.
Add - (interactive button) Adds a new request configuration.

Alarm configuration

Alarms are a way of setting up automated actions when some Modbus values meet user specified
conditions. The figure below is an example of the Alarm configuration page and the table below
provides information on fields that it contains:

Field Value Description
Enabled yes | no; default: no Turns the alarm on or off

Function code
Read Coil Status (1) | Read Input
Status (2) | Read Holding Registers
(3) | Read Input Registers (4);
default: Read Coil Status (1)

Modbus function used in Modbus request.

Register integer [0..65535]; default: none Number of the Modbus coil/input/holding
register/input register that will be read.

Condition More than | Less than | Equal to |
Not Equal to; default: Equal to

When a value is obtained it will be
compared against the value specified in
the following field. The comparison will be
made in accordance with the condition
specified in this field.

Value various; default: none The value against which the read data will
be compared.

http://wiki.teltonika-networks.com/index.php?title=File:Networking_rut_manual_modbus_modbus_tcp_master_alarm_configuration.png&filetimestamp=20201120083050&

Action SMS | Trigger output | Modbus
Request; default: SMS

Action that will be taken if the condition is
met. Possible actions:
• SMS - sends and SMS message to a
specified recipient(s).
• Trigger output - changes the state of a
specified output(s).
• Modbus Request - sends a Modbus
request to a specified slave.

SMS: Message string; default: none SMS message text.
SMS: Phone
number phone number; default: none Recipient's phone number.

Trigger output:
Output

Open collector output | Relay output
| Both; default: Open collector
output

Which output(s) will be triggered.

Trigger output: I/O
Action

Turn On | Turn Off | Invert; default:
Turn On

Action that will taken on the specified
output.

Modbus Request:
IP address ip | host; default: none Modbus slave's IP address.

Modbus Request:
Port integer [0..65535]; default: none Modbus slave's port.

Modbus Request:
Timeout integer [1..30]; default: 5 Maximum time to wait for a response.

Modbus Request:
ID integer [1..255]; default: none Modbus slave ID.

Modbus Request:
Modbus function

Read Coil Status (1) | Read Input
Status (2) | Read Holding Registers
(3) | Read Input Registers (4) |
Force Single Coil (5) | Preset Single
Register (6) | Force Multiple Coils
(15) | Force Multiple Registers (16);
default: Force Single Coil (5)

A function code specifies the type of
register being addressed by a Modbus
request.

Modbus Request:
First register integer [0..65535]; default: none Begins reading from the register specified

in this field.
Modbus Request:
Number of
registers

integer [0..65535]; default: none The number of registers that will be read
from the first register.

Modbus Data to Server
The Modbus Data to Server function provides you with the possibility to set up senders that
transfer data collected from Modbus slaves to remote servers. To add a new data sender, enter the
server's address, specify the data sending period and click the "Add" button:

Data sender configuration

When you add a new data sender, you will be redirected to its configuration window. The figure

http://wiki.teltonika-networks.com/index.php?title=File:Networking_rut_manual_modbus_modbus_data_to_server_new_modbus_data_sender.png&filetimestamp=20190401123701&

below is an example of that window and the table below provides information on the fields that it
contains:

Field Value Description

Enabled yes | no; Default: no Turns the data sender ON or
OFF

Name string; Default: none Data sender's name. used for
easier management purposes

Protocol HTTP(S) | MQTT; Default: HTTP(S) Data sending protocol

JSON format json string; Default: {"ID":"%i",
"TS":"%t","ST":"%s","VR":"%a"}

Provides the possibility to fully
customize the JSON segment

Segment count 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | All; Default: 1 Max segment count in one JSON
string sent to server.

URL / Host /
Connection
string

host | ip; Default: none

Address of the server to which
the data will be sent.
Important note: when using
HTTPS, remember to add the
https:// prefix before the URL.

Period integer [1..6400]; Default: none Data sending frequency (in
seconds)

HTTP(S): Data
filtering

All data | By slave ID | By slave IP; Default: All
data

Which data this sender will
transfer to the server

HTTP(S): Retry
on fail yes | no; Default: no

Specifies whether the data
sender should retry failed
attempts

HTTP(S): Custom
header string; Default: no Adds a custom header(s) to HTTP

requests
MQTT: Port integer [0..65535]; Default: none Port used to connect to host.

MQTT: Keepalive integer [1..640]; Default: none MQTT keepalive period in
seconds.

MQTT: Topic string; Default: none Write topic to which your data
will be sent.

MQTT: QoS 0 | 1 | 2; Default: 0

This field defines the guarantee
of delivery for specific message.
Possible values are:
• At most once (0)
• At least once (1)
• Exactly once (2)

MQTT: Use TLS yes | no; Default: no Turns TLS authentication on or
off.

MQTT Gateway
The MQTT Gateway function is used to transfer Modbus data (send requests, receive responses)
over MQTT. When it is enabled, the device (this {{{name}}}) subscribes to a REQUEST topic and
publishes on a RESPONSE topic on a specified MQTT broker. It translates received MQTT message
payload to a Modbus request and relays it to the specified Modbus TCP slave.

When the MQTT Gateway receives a response from the slave, it translates it to an MQTT message

http://wiki.teltonika-networks.com/index.php?title=File:Networking_rut_manual_modbus_modbus_data_to_server_data_sender_configuration.png&filetimestamp=20201120083827&

and publishes it on the RESPONSE topic.

Below is an example of the MQTT Gateway page. Refer to the table for information on MQTT
Gateway configuration fields.

Field Value Description
Enable off | on; default: off Turns MQTT gateway on or off.
Host ip | host; default: 127.0.0.1 IP address or hostname of an MQTT broker.

Port integer [0..65535]; default:
1883 Port number of the MQTT broker.

Request topic string; default: request MQTT topic for sending requests.
Response topic string; default: response MQTT topic for subscribing to responses.

Username string; default: none Username for authentication to the MQTT broker.
Leave empty if you do not use client authentication.

Password string; default: none Password for authentication to the MQTT broker.
Leave empty if you do not use client authentication.

Request messages

Note: MQTT Gateway uses Register Number instead of Register Address for pointing to a register.
For example, to request the Uptime of a device, you must use 2 in the Register Number field.

Modbus request data sent in the MQTT payload should be generated in accordance with the
following format:

0 <COOKIE> <IP_TYPE> <IP> <PORT> <TIMEOUT> <SLAVE_ID> <MODBUS_FUNCTION>
<REGISTER_NUMBER> <REGISTER_COUNT/VALUE>

Explanation:

0 - must be 0, which signifies a textual format (currently the only one implemented).
Cookie - a 64-bit unsigned integer in range [0..264]). A cookie is used in order to distinguish
which response belongs to which request, each request and the corresponding response
contain a matching cookie: a 64-bit unsigned integer.
IP type - host IP address type. Possible values:

0 - IPv4 address;
1 - IPv6 address;
2 - hostname that will be resolved to an IP address.

IP - IP address of a Modbus TCP slave. IPv6 must be presented in full form (e.g.,
2001:0db8:0000:0000:0000:8a2e:0370:7334).
Port - port number of the Modbus TCP slave.
Timeout - timeoutfor Modbus TCP connection, in seconds. Range [1..999].
Slave ID - Modbus TCP slave ID. Range [1..255].
Modbus function - Only these are supported at the moment:

3 - read holding registers;
6 - write to a single holding register;

http://wiki.teltonika-networks.com/index.php?title=File:Networking_rutos_manual_modbus_mqtt_gateway_scheme.png&filetimestamp=20200902111737&
http://wiki.teltonika-networks.com/view/File:Networking_rut_manual_modbus_mqtt_gateway_v2.png

16 - write to multiple holding registers.
Register number - number of the first register (in range [1..65536]) from which the registers
will be read/written to.
Register count/value - this value depends on the Modbus function:

3 - register count (in range [1..125]); must not exceed the boundary (first register
number + register count <= 65537);
6 - register value (in range [0..65535]);
16 - register count (in range [1..123]); must not exceed the boundary (first register
number + register count <= 65537); and register values separated with commas,
without spaces (e.g., 1,2,3,654,21,789); there must be exactly as many values as
specified (with register count); each value must be in the range of [0..65535].

Response messages

A special response message can take one of the following forms:

<COOKIE> OK - for functions 6 and 16
<COOKIE> OK <VALUE> <VALUE> <VALUE>... - for function 3, where <VALUE>
<VALUE> <VALUE>... are read register values
<COOKIE> ERROR: ... - for failures, where ... is the
error description

Examples

Below are a few examples of controlling/monitoring the internal Modbus TCP Slave on
{{{name}}}.

Reboot the device

Request:

0 65432 0 192.168.1.1 502 5 1 6 206 1

Response:

65432 OK

Retrieve uptime

Request:

0 65432 0 192.168.1.1 502 5 1 3 2 2

Response:

65432 OK 0 5590

If you're using Eclipse Mosquitto (MQTT implementation used on {{{name}}}), Publish/Subscribe
commands may look something like this:

Retrieve uptime

Request:

mosquitto_pub -h 192.168.1.1 -p 1883 -t request -m "0 65432 0
192.168.1.1 502 5 1 3 2 2"

Response:

mosquitto_sub -h 192.168.1.1 -p 1883 -t response
65432 OK 0 5590

See also
[[{{{name}}} Monitoring via Modbus|Monitoring via Modbus]] - detailed examples on
how to use Modbus TCP

[[Category:{{{name}}} Services section (legacy)]]

