Changes

66,767 bytes added ,  19:51, 4 October 2019
Created page with " == '''<big>Introduction</big>''' == A codec is a device or computer program for encoding or decoding a digital data stream or signal. Codec is a portmanteau of coder-decoder...."

== '''<big>Introduction</big>''' ==
A codec is a device or computer program for encoding or decoding a digital data stream or signal. Codec is a portmanteau of coder-decoder.<br/>
A codec encodes a data stream or a signal for transmission and storage, possibly in encrypted form, and the decoder function reverses the encoding for playback or editing.



Codec ID table
{| class="wikitable"
|-
! style="background: black; color: white;"| Codec 8
! style="background: black; color: white;"| Codec 8 extended
UDP channel header
! style="background: black; color: white;"| Codec 12
! style="background: black; color: white;"| Codec 13
! style="background: black; color: white;"| Codec 16
|-
| 0x08 || 0x8E || 0x0C || 0x0D || 0x10
|}

== '''<big>Codec 8</big>''' ==

*''AVL data packet''
Because the smallest information amount that can be written is one bit, there can be some bits left unused when result is byte array. Any unused bits should be left blank.

Below table represents AVL data packet structure.


{| class="wikitable"
|-
! style="background: black; color: white;"| 4 zeros
! style="background: black; color: white;"| Data field length
! style="background: black; color: white;"| Codec ID
! style="background: black; color: white;"| Number of Data 1
! style="background: black; color: white;"| AVL Data
! style="background: black; color: white;"| Number of Data 2
! style="background: black; color: white;"| CRC-16
|-
| 4 bytes || 4 bytes || 1 byte || 1 byte || 30-147 bytes || 1 byte || 4 bytes
|}

Number of data – number of encoded data (number of records).
Codec ID is constant 08.

Data field length is the length of bytes [codec id, number of data 2].
Number of data 1 should always be equal to number of data 2 byte.
CRC-16 is 4 bytes, but first two are zeroes and last two are CRC-16 calculated for [codec id, number of data 2]
Minimum AVL packet size is 45 bytes (all IO elements disabled).
Maximum AVL packet size for one record is 783 bytes.


*''AVL data''

{| class="wikitable"
|-
! style="background: black; color: white;"| Timestamp
! style="background: black; color: white;"| Priority
! style="background: black; color: white;"| GPS Element
! style="background: black; color: white;"| IO element
|-
| 8 bytes || 1 byte || 15 bytes || 6-123
|}


Timestamp – difference, in milliseconds, between the current time and midnight, January 1, 1970 UTC

*''Priority''


{| class="wikitable"
|-

|-
| style="background: black; color: white;"|0 || Low
|-
| style="background: black; color: white;"|1 || High
|-
| style="background: black; color: white;"|2 || Panic
|}


*''GPS Element''


{| class="wikitable"
|-
! style="background: black; color: white;"| Longitude
! style="background: black; color: white;"| Latitude
! style="background: black; color: white;"| Altitude
! style="background: black; color: white;"| Angle
! style="background: black; color: white;"| Satellites
! style="background: black; color: white;"| Speed
|-
| 4 bytes || 4 bytes || 2 bytes || 2 bytes || 1 bytes || 2 bytes
|}

X Longitude

Y Latitude1

Altitude In meters above sea level1

Angle In degrees, 0 is north, increasing clock-wise 1

Satellites Number of visible satellites1

Speed in km/h. 0x0000 if GPS data is invalid1

Longitude and latitude are integer values built from degrees, minutes, seconds and milliseconds by formula

[[Image:197.png]]

d - Degrees

m - Minutes

s - Seconds

ms - Milliseconds

p - Precision (10000000)

If longitude is in west or latitude in south, multiply result by –1. To determine if the coordinate is negative, convert it to binary format and check the very first bit. If it is 0, coordinate is positive, if it is 1, coordinate is negative.

Example:

Received value: 20 9c ca 80
Converted to BIN: 00100000 10011100 11001010 10000000 first bit is 0, which means coordinate is positive
Converted to DEC: 547146368
For more information see two‘s complement arithmetics.


*''IO Element''

{| class="wikitable"
|-

| style="background: black; color: white;"|Event IO ID || 1 byte
|-
| style="background: black; color: white;"|N of Total IO || 1 byte
|-
| style="background: black; color: white;"|N1 of One Byte IO || 1 byte
|-
| style="background: black; color: white;"|1’st IO ID || 1 byte
|-
| style="background: black; color: white;"|1’st IO Value || 1 byte
|-
| ... ||
|-
| style="background: black; color: white;"|N1’th IO ID || 1 byte
|-
| style="background: black; color: white;"|N1’th IO Value || 1 byte
|-
| style="background: black; color: white;"|N2 of Two Bytes || 1 byte
|-
| style="background: black; color: white;"|1’st IO ID || 1 byte
|-
| style="background: black; color: white;"|1’st IO Value || 2 bytes
|-
| |... ||
|-
| style="background: black; color: white;"|N2’th IO ID || 1 byte
|-
| style="background: black; color: white;"|N2’th IO Value || 2 bytes
|-
| style="background: black; color: white;"|N4 of Four Bytes || 1 byte
|-
| style="background: black; color: white;"|1’st IO ID || 1 byte
|-
| style="background: black; color: white;"|1’st IO Value || 4 byte
|-
| |... ||
|-
| style="background: black; color: white;"|N4’th IO ID || 1 byte
|-
| style="background: black; color: white;"|N4’th IO Value || 4 bytes
|-
| style="background: black; color: white;"|N8 of Eight Bytes || 1 byte
|-
| style="background: black; color: white;"|1’st IO ID || 1 byte
|-
| style="background: black; color: white;"|1’st IO Value || 8 bytes
|-
| |... ||
|-
| style="background: black; color: white;"|N8’th IO ID || 1 byte
|-
| style="background: black; color: white;"|N8’th IO Value || 8 bytes
|}
Event IO ID – if data is acquired on event – this field defines which IO property has changed and generated an event. If data cause is not event – the value is 0.

N total number of properties coming with record (N=N1+N2+N4+N8)

N1 number of properties, which length is 1 byte

N2 number of properties, which length is 2 bytes

N4 number of properties, which length is 4 bytes

N8 number of properties, which length is 8 bytes


'''Example'''

Received data:



<span style="background-color: #848484">00000000</span><span style="background-color: #A9BCF5">0000008c</span><span style="background-color: #04B45F">08</span><span style="background-color: #FF0000">01</span><span style="background-color: #9F81F7">0000013feb55ff74</span><span style="background-color: #D8D8D8">00</span><span style="background-color: #FFFF00">0f0ea850</span><span style="background-color: #FAAC58">209a6900</span><span style="background-color: #2EFE2E">0094</span><span style="background-color: #088A29">0000</span>120000<span style="background-color: #0040FF">00</span>

<span style="background-color: #A9A9F5">1e</span><span style="background-color: #DF3A01">09</span>010002000300040016014703f0001504c800<span style="background-color: #DF3A01">0c</span>0900730a00460b00501300464306

d7440000b5000bb60007422e9
f180000cd0386ce0001<span style="background-color: #DF3A01">07</span>c700000000f10000601a4600

0001344800000bb84900000bb84a00000bb84c00000000<span style="background-color: #DF3A01">02</span>4e0000000000000000cf00

00000000000000<span style="background-color: #FF0000">01</span><span style="background-color: #F5DA81">00003fca</span>

In total 152 Bytes


<span style="background-color: #848484">00000000</span> 4 zeroes, 4 bytes

<span style="background-color: #A9BCF5">0000008c</span> data length, 4 bytes

<span style="background-color: #04B45F">08</span> – Codec ID

<span style="background-color: #FF0000">01</span> Number of Data (1 record) 1’st record data



<span style="background-color: #9F81F7">010000013feb55ff74</span> – Timestamp in milliseconds (1374042849140)

GMT: Wed, 17 Jul 2013 06:34:09 GMT

<span style="background-color: #D8D8D8">00</span> – Priority

GPS Element

<span style="background-color: #FFFF00">0f0ea850</span> – Longitude 252618832 = 25,2618832º N

<span style="background-color: #FAAC58">209a6900</span> – Latitude 546990336 = 54,6990336 º E

<span style="background-color: #2EFE2E">0094</span> – Altitude 148 meters

<span style="background-color: #088A29">0000</span> – Angle 0

<span style="background-color: #088A29">12</span> – 18 Visible satellites

<span style="background-color: #088A29">0000</span> – 0 km/h speed

IO Element

<span style="background-color: #0040FF">00</span> – IO element ID of Event generated (in this case when 00 – data generated not on event)

<span style="background-color: #A9A9F5">1e</span> – 30 IO elements in record (total)

<span style="background-color: #DF3A01">09</span> – 9 IO elements, which length is 1 Byte

0 – IO element ID = 01

0 – IO element’s value = 0

02 – IO element ID = 02

0 – IO element’s value = 0

03 – IO element ID = 03

0 – IO element’s value = 0

4 – IO element ID = 04

0 – IO element’s value = 0

16 – IO element ID = 22 (dec)

0 – IO element’s value = 1

47 – IO element ID = 71 (dec)

03 – IO element’s value = 3

F0 – IO element ID = 240 (dec)

0 – IO element’s value = 0

15 – IO element ID = 21 (dec)

04 – IO element’s value = 0

C8 – IO element ID = 200 (dec)

0 – IO element’s value = 0

<span style="background-color: #DF3A01">0c</span> – 12 IO elements, which value length is 2 Bytes

09 – IO element ID = 9 (dec)

0073 – IO element’s value

0a – IO element ID = 10 (dec)

0046 – IO element’s value

0b – IO element ID = 11 (dec)

0050 – IO element’s value

13 – IO element ID = 19 (dec)

0046 – IO element’s value

43 – IO element ID = 67 (dec)

06d7 – IO element’s value

1 – IO element ID = 68 (dec)

0 – IO element’s value

B5 – IO element ID = 181 (dec)

000b – IO element’s value

B6 – IO element ID = 182 (dec)

0007 – IO element’s value

42 – IO element ID = 66 (dec)

2e9f – IO element’s value

2 – IO element ID = 24 (dec)

0 – IO element’s value

cd – IO element ID = 205 (dec)

3 – IO element’s value

CE – IO element ID = 206 (dec)

0 – IO element’s value

<span style="background-color: #DF3A01">07</span> – 7 IO elements, which value length is 4 Bytes

C7 – IO element ID = 199 (dec)

0 – IO element’s value

f1 – IO element ID = 241 (dec)

0000601a – IO element’s value

46 – IO element ID = 70 (dec)

00000134 – IO element’s value

48 – IO element ID = 72 (dec)

00000bb8 – IO element’s value

4 – IO element ID = 73 (dec)

00000bb8 – IO element’s value

4a – IO element ID = 74 (dec)

00000bb8 – IO element’s value

4c – IO element ID = 76 (dec)

1 – IO element’s value

<span style="background-color: #DF3A01">02</span> – 2 IO elements, which value length is 8 Bytes

4e – IO element ID = 78 (dec)

0 – IO element’s value

cf – IO element ID = 207 (dec)

0 – IO element’s value

<span style="background-color: #FF0000">01</span> – Number of Data (1 record)

<span style="background-color: #F5DA81">00003fca</span> - CRC-16, 4 Bytes (first 2 are always zeros)



*'''SENDING DATA OVER TCP/IP'''

First when module connects to server, module sends its IMEI. First comes short identifying number of bytes written and then goes IMEI as text (bytes).

For example IMEI 356307042441013 would be sent as 000f333536333037303432343431303133

First two bytes denote IMEI length. In this case 000F means, that IMEI is 15 bytes long.

After receiving IMEI, server should determine if it would accept data from this module. If yes server will reply to module 01 if not 00. Note that confirmation should be sent as binary packet. I.e. 1 byte 0x01 or 0x00.

Then module starts to send first AVL data packet. After server receives packet and parses it, server must report to module number of data received as integer (four bytes).

If sent data number and reported by server doesn’t match module resends sent data.


Example:

Module connects to server and sends IMEI:

000f333536333037303432343431303133

Server accepts the module:

01

Module sends data packet:
{| class="wikitable"
|-
! style="background: black; color: white;"|AVL data packet header !! style="background: black; color: white;"|AVL data array !! style="background: black; color: white;"| CRC
|-
| Four zero bytes,
‘AVL data array’ length – 254
|| CodecId – 08,
NumberOfData – 2.
(Encoded using continuous bit stream.

Last byte padded to align to byte boundary)
|| CRC of ‘AVL data array’
|-
| 00000000000000FE || 0802...(data elements)...02 || 00008612
|}

Server acknowledges data reception (2 data elements):
00000002


*'''SENDING DATA OVER UDP/IP'''


*''UDP channel protocol''

UDP channel is a transport layer protocol above UDP/IP to add reliability to plain UDP/IP using acknowledgment packets. The packet structure is as follows:

{| class="wikitable "
|-
! colspan="4" align="center" style="background: black; color: white;"|UDP datagram
|-
| rowspan="4"| UDP channel packet x N
| Example || 2 bytes || Packet length (excluding this field) in big ending byte order
|-
| Packet Id || 2 bytes || Packet id unique for this channel
|-
| Not usable byte || 1 byte || Not usable byte
|-
| Packet payload || m bytes || Data payload
|}


{| class="wikitable"
|-
! colspan="2" align="center" style="background: black; color: white;"|Not usable byte

|-
| 1||Data packet requiring acknowledgment
|}

Acknowledgment packet should have the same packet id as acknowledged data packet and empty data payload. Acknowledgement should be sent in binary format

{| class="wikitable"
|-
! colspan="3" align="center" style="background: black; color: white;"|Acknowledgment packet
|-
| Packet length || 2 bytes || 0x0003
|-
| Packet id || 2 bytes || same as in acknowledged packet
|-
| Not usable byte|| 1 byte || 0x00
|}


*'''Sending AVL data using UDP channel'''

AVL data are sent encapsulated in UDP channel packets (Data payload field).

{| class="wikitable"
|-
! colspan="3" align="center" style="background: black; color: white;"|AVL data encapsulated in UDP channel packet
|-
| AVL packet id (1 byte) || Module IMEI || AVL data array
|}

AVL packet id (1 byte) – id identifying this AVL packet
Module IMEI – IMEI of a sending module encoded the same as with TCP
AVL data array – array of encoded AVL data


{| class="wikitable"
|-
! colspan="3" align="center" style="background: black; color: white;"|Server response to AVL data packet
|-
| AVL packet id (1 byte) ||Number of accepted AVL elements (1 byte)
|}


AVL packet id (1 byte) – id of received AVL data packet

AVL packet id (1 byte) – id of received AVL data packet

Number of AVL data elements accepted (1 byte) – number of AVL data array entries from the beginning of array, which were accepted by the server.

Scenario:
Module sends UDP channel packet with encapsulated AVL data packet.
Server sends UDP channel packet with encapsulated response
Module validates AVL packet id and Number of accepted AVL elements. If server response with valid AVL packet id is not received within configured timeout, module can retry sending.


Example:
Module sends the data:

{| class="wikitable"
|-
! style="background: black; color: white;"|UDP channel header !!style="background: black; color: white;"| AVL packet header !!style="background: black; color: white;"| AVL data array
|-
| Len – 253,
Id – 0xCAFE,

Not usable byte – 00

|| AVL packet id – 0xDD,
IMEI – 1234567890123456
|| CodecId – 08,
NumberOfData – 2.
(Encoded using continuous bit stream)

|-
| 00FDCAFE01 || DD000F3133343536373839303132333435 || 0802…(data elements)…02
|}


Server must respond with acknowledgment:

{| class="wikitable"
|-
!style="background: black; color: white;"| UDP channel header !!style="background: black; color: white;"| AVL packet acknowledgment
|-
| Len – 5,
Id – 0xABCD,

Not usable byte – 00

|| AVL packet id – 0xDD,
NumberOfAcceptedData – 2

|-
| 0005ABCD01 || DD02
|}

== '''<big>Codec 8 Extended</big>''' ==



*'''Protocols overview'''


Difference between codec8 and codec8 extended

{| class="wikitable"
|-
! style="background: black; color: white;"| !!style="background: black; color: white;"| Codec 8 !!style="background: black; color: white;"| Codec 8 Extended
|-
| Codec ID || 0x08 || 0x8E
|-
| AVL Data IO element length || 1 Byte || 2 Bytes
|-
| AVL Data IO element total IO count length || 1 Byte || 2 Bytes
|-
| AVL Data IO element IO count length || 1 Byte || 2 Bytes
|-
| AVL Data IO element AVL ID length || 1 Byte || 2 Bytes
|-
| Variable size IO elements || Does not include || Includes variable size elements
|}
<small>Table 2. Codec 8 and 8 Extended differences
</small>

Main differences between are shown in above table. AVL data element sizes in codec 8 extended protocol were increased to 2 bytes length and new variable type added. For more detailed description look in codec 8
and codec 8 extended chapters.


*'''Codec 8 extended protocol sending over TCP'''


'''AVL data packet'''

Below table represents AVL data packet structure.
{| class="wikitable"
|-
! style="background: black; color: white;"|4 zeros !! style="background: black; color: white;"|Data field length !! style="background: black; color: white;"|Codec ID !! style="background: black; color: white;"|Number of
Data 1
!! style="background: black; color: white;"|AVL Data !! style="background: black; color: white;"|Number of
Data 2
!! style="background: black; color: white;"|CRC-16
|-
| 4 Bytes || 4 Bytes || 1 Byte || 1 Byte || 38-768
Bytes
|| 1 Byte || 4 Bytes
|}
<small>Table 3. AVL data packet structure</small>


Number of data – number of encoded data (number of records). Codec ID is constant 0x8E.

Data field length is the length of bytes [codec id, number of data 2]. Number of data 1 should always be equal to number of data 2 byte.

CRC-16 is 4 bytes, but first two are zeroes and last two are CRC-16 calculated for [codec id, number of data
2]

Minimum AVL packet size is 53 bytes (all IO elements disabled).


*'''AVL Data'''

{| class="wikitable"
|-
!style="background: black; color: white;"| Timestamp !!style="background: black; color: white;"| Timestamp Priority !!style="background: black; color: white;"| GPS Element !!style="background: black; color: white;"| IO Element
|-
| 8 Bytes || 1 Byte || 15 Bytes || 14 - 744
|}
<small>Table 4. AVL data structure</small>


*'''Priority'''
{| class="wikitable"
|-
| style="background: black; color: white;"| 0 || Low
|-
| style="background: black; color: white;"| 1 || High
|-
| style="background: black; color: white;"| 2 || Panic
|}
<small>Table 5. Priority element values</small>


*'''GPS Element'''

{| class="wikitable"
|-
!style="background: black; color: white;"| Longitude !!style="background: black; color: white;"| Latitude !!style="background: black; color: white;"| Altitude !!style="background: black; color: white;"| Angle !!style="background: black; color: white;"| Satellites !!style="background: black; color: white;"| Speed
|-
| 4 Bytes || 4 Bytes || 2 Bytes || 2 Bytes || 1 Byte || 2 Bytes
|}
<small>Table 6. GPS element structure</small>


*<big>IO Element</big>

{| class="wikitable"
|-
|style="background: black; color: white;"| Event IO ID || 2 bytes
|-
|style="background: black; color: white;"| N of Total IO || 2 bytes
|-
|style="background: black; color: white;"| N1 of One Byte IO || 2 bytes
|-
|style="background: black; color: white;"| 1'st IO ID || 2 bytes
|-
|style="background: black; color: white;"| 1'st IO Value || 1 bytes
|-
| ||
|-
|style="background: black; color: white;"| N1'th IO ID || 2 bytes
|-
|style="background: black; color: white;"| N1'st IO Value || 1 bytes
|-
|style="background: black; color: white;"| N2 of Two Byte IO || 2 bytes
|-
|style="background: black; color: white;"| 1'st IO ID || 2 bytes
|-
|style="background: black; color: white;"| 1'st IO Value || 2 bytes
|-
| ||
|-
|style="background: black; color: white;"| N2'th IO ID || 2 bytes
|-
|style="background: black; color: white;"| N2'st IO Value || 2 bytes
|-
|style="background: black; color: white;"| N4 of Four Byte IO || 2 bytes
|-
|style="background: black; color: white;"| 1'st IO ID || 2 bytes
|-
|style="background: black; color: white;"| 1'st IO Value || 4 bytes
|-
| ||
|-
|style="background: black; color: white;"| N4'th IO ID || 2 bytes
|-
|style="background: black; color: white;"| N4'st IO Value || 4 bytes
|-
|style="background: black; color: white;"| N2 of Eight Byte IO || 2 bytes
|-
|style="background: black; color: white;"| 1'st IO ID || 2 bytes
|-
|style="background: black; color: white;"| 1'st IO Value || 8 bytes
|-
| ||
|-
|style="background: black; color: white;"| N8'th IO ID || 2 bytes
|-
|style="background: black; color: white;"| N8'st IO Value || 8 bytes
|-
|style="background: black; color: white;"| NX of X Byte IO || 2 bytes
|-
|style="background: black; color: white;"| 1'st IO ID || 2 bytes
|-
|style="background: black; color: white;"| 1'st IO Length || 2 bytes
|-
|style="background: black; color: white;"| 1'st IO Value || defined by length
|-
| ||
|-
|style="background: black; color: white;"| NX'st IO ID || 2 bytes
|-
|style="background: black; color: white;"| NX'st IO Length || 2 bytes
|-
|style="background: black; color: white;"| NX'st IO Value || defined by length
|}
<small>Table 7. IO element structure</small>

N - total number of properties coming with record (N=N1+N2+N4+N8+NX)

N1 - number of properties, which length is 1 byte

N2 - number of properties, which length is 2 bytes

N4 - number of properties, which length is 4 bytes

N8 - number of properties, which length is 8 bytes

NX - number of properties, which length is defined by length element


*'''Communication with server'''

Communication with server is the same as with codec 8 protocol, except in codec8 extended protocol codec id is 0x8E.


Example:

Module connects to server and sends IMEI:

000f333536333037303432343431303133

Server accepts the module:

01


Module sends data packet
{| class="wikitable"
|-
!style="background: black; color: white;"| AVL data packet header !!style="background: black; color: white;"| AVL data array !!style="background: black; color: white;"| CRC
|-
| Four zero bytes,
‘AVL data array’ length – 254
|| Codec Id – 8E, NumberOfData – 02.
(Encoded using continuous bit stream.

Last byte padded to align to byte boundary)
|| CRC of ‘AVL data array’
|-
| 00000000000000FE || 8E02...(data elements)...02 || 00008612
|}
<small>Table 8. IO element structure
</small>

Server acknowledges data reception (2 data elements):
00000002

*'''Example'''

Received data:



<span style="background-color: #A4A4A4">00000000</span><span style="background-color: #58ACFA">0000005F</span><span style="background-color: #04B431">8E</span><span style="background-color: #FF0000">01</span><span style="background-color: #8000FF">0000015FBA40B620</span><span style="background-color: #81BEF7">00</span><span style="background-color: #F4FA58">0F0DCDE4</span><span style="background-color: #FF8000">20959D30</span><span style="background-color: #3ADF00">008A</span><span style="background-color: #21610B">0000</span>060000<span style="background-color: #58ACFA">0000</span><span style="background-color: #0404B4">0006</span><span style="background-color: #DF7401">0001</span>00EF0
0<span style="background-color: #DF7401">0001</span>0011001E<span style="background-color: #DF7401">0001</span>00100000CBDF<span style="background-color: #DF7401">0002</span>000B000000003544C875000E0000000029BFE4D1<span style="background-color: #DF7401">0001</span>01000011
0000000000000000000000000000000000<span style="background-color: #FF0000">01</span><span style="background-color: #F781F3">0000D153</span>


<span style="background-color: #A4A4A4">00000000</span> 4 zeros, 4 bytes

<span style="background-color: #58ACFA">0000005F</span> data length, 4 bytes

<span style="background-color: #04B431">8E</span> – Codec ID

<span style="background-color: #FF0000">01</span>- Number of Data (1 record)

1’st record data

<span style="background-color: #8000FF">0000015FBA40B620</span> – Timestamp in milliseconds (1510658324000)

GMT: Tuesday, November 14, 2017 11:18:44 AM

<span style="background-color: #81BEF7">00</span> – Priority

'''GPS Element'''

<span style="background-color: #F4FA58">0F0DCDE4</span> – Longitude 252562916 = 25, 2562916º N

<span style="background-color: #FF8000">20959D30</span> – Latitude 546676016 = 54,6676016 º E

<span style="background-color: #3ADF00">008A</span> – Altitude 138 meters

<span style="background-color: #21610B">0000</span> – Angle 0º

06 – 6 Visible satellites

0000 – 0 km/h speed

IO Element

<span style="background-color: #58ACFA">0000</span> – IO element ID of Event generated (in this case when 0000 – data generated not on event)

<span style="background-color: #0404B4">0006</span> – 6 IO elements in record (total)

<span style="background-color: #DF7401">0001</span> – 1 IO elements, which length is 1 Byte

00EF – IO element ID = 239 (dec)

00 – IO element’s value

<span style="background-color: #DF7401">0001</span> – 1 IO elements, which length is 2 Byte

0011 – IO element ID = 17 (dec )

001E – IO element’s value

<span style="background-color: #DF7401">0001</span> – 1 IO elements, which length is 4 Byte

0010 – IO element ID = 16 (dec )

0000CBDF – IO element’s value = 52191 (dec )

<span style="background-color: #DF7401">0002</span> – 2 IO elements, which length is 2 Byte

000B – IO element ID = 11 (dec )

000000003544C875 – IO element’s value

000E – IO element ID = 14 (dec )

0000000029BFE4D1 – IO element’s value

<span style="background-color: #FF0000">01</span> – Number of Data (1 record)

<span style="background-color: #F781F3">0000D153</span> – CRC-16, 4 Bytes (first 2 are always zeros


'''<big>Codec 8 extended protocol sending over UDP</big>'''

*'''AVL data packet'''

AVL data packet is the same as with codec 8, except codec ID is changed to 0x8E.


Example:

Module sends the data:
{| class="wikitable"
|-
!style="background: black; color: white;"| UDP channel header !!style="background: black; color: white;"| AVL packet header !!style="background: black; color: white;"| AVL data array
|-
| Len – 253,
Id – 0xCAFE,

Not usable byte – 00

|| AVL packet id – 0xDD,
IMEI – 1234567890123456
|| Codec Id – 8E, NumberOfData – 02.
(Encoded using continuous bit stream

|-
| 00FDCAFE00 || DD000F3133343536373839303132333435 ||8E02…(data elements)…02
|}
<small>Table 9. Example packet send to server</small>


Server must respond with acknowledgment:
{| class="wikitable"
|-
!style="background: black; color: white;"| UDP channel header!!style="background: black; color: white;"| AVL packet acknowledgment
|-
| Len – 5,
Id – 0xCAFE,

Not usable byte – 00

|| AVL packet id -0xDD
Number of Accepted Data -2
|-
| 0005CAFE00 || DD02
|}
<small>Table 10. Example packet server response</small>


Example

Server received data:

00A1CAFE001B000F3335363330373034323434313031338E010000013FEBDD19C8000F0E9FF0209A718000690000120000

001E09010002000300040016014703F0001504C8000C0900910A00440B004D130044431555440000B5000BB60005422E

9B180000CD0386CE000107C700000000F10000601A460000013C4800000BB84900000BB84A00000BB84C00000000024E

0000000000000000CF000000000000000001

'''Data length''': 00A1 or 161 Bytes (not counting the first 2 data length bytes)

'''Packet identification''': 0xCAFE 2 bytes

'''Not usable byte''': 00

'''Packet id''': 1B

'''Imei length''': 000F

'''Actual imei''': 333536333037303432343431303133

'''Codec id''': 8E

'''Number of data''': 01

'''Timestamp''': 0000013FEBDD19C8

'''Priority''': 00

'''GPS data''': 0F0E9FF0209A718000690000120000

== '''<big>Codec 12</big>''' ==

*'''About Codec12'''

Codec12 is original Teltonika protocol for device-server communication over GPRS messages.

Codec12 GPRS commands can be used for sending configuration, debug, digital outputs control commands or other (special purpose command on special firmware versions).
This protocol is also necessary for using FMB63/FM63/FM5300/FM5500/FM4200 features like: Garmin, LCD communication, COM TCP Link Mode.

*'''FM firmware requirements'''

Supported GPRS commands on each device depend on firmware version. For available GPRS commands on each device, please refer to Table1 FM firmware requirement “SMS over GPRS” means that all standard SMS commands text can be sent to device via GPRS in Codec12 format.

{| class="wikitable"
|-
!style="background: black; color: white;"| Device !!style="background: black; color: white;"| SMS over GPRS !!style="background: black; color: white;"| SMS over GPRS via UDP !!style="background: black; color: white;"| Special Codec12 GPRS commands
|-
| FM11YX || Available since base firmware 01.11.XX || Since base firmware
1.26.00
|| Available in FM1100 and FM1110 special firmware version 12.XX.XX*
|-
| FM12YX || Available since base firmware 01.03.XX || - || Available in FM12YX special firmware 09.XX.XX*
|-
| FM10YX || Available since base firmware 00.03.XX || - || Available since base firmware 00.06.XX and later versions**
|-
| FM3400 || Available since base firmware 01.01.XX || - || -
|-
| FM36YX || Available in base firmware || Since base firmware 01.06.01 || -
|-
| FM5300 || Available in all firmware versions || - || Available in all firmware versions**
|-
| FM5500 || Available in all firmware versions || - || Available in all firmware versions**
|-
| FM2200 || Not available || - || Special firmware version 07.XX.XX*
|-
| FM4200 || Not available || - || Special firmware version 42.XX.XX*
|-
| FM63YX || Available in all firmware versions || Since base firmware 00.02.19 || Available in all firmware versions**
|-
| FMB9YX || Available in base firmware || Available in base firmware || -
|-
| FMB0YX || Available in base firmware || Available in base firmware || -
|-
| FMB1YX || Available in base firmware || Available in base firmware || -
|-
| FMB6YX || Available in all firmware versions || Since base firmware 00.02.19 || Available in all firmware versions**
|-
| FMA1YX || Available in base firmware || Since base firmware 1.26.00 || Available in special firmware version 12.XX.XX*
|-
| FMA2YX || Available in base firmware || Available in base firmware || -
|}
<small>Table 1. FM firmware requirement</small>

'*' - supported special commands are listed on special firmware description. Please contact Your Teltonika sales manager for more details;

'**' - supported special commands are listed on device user manual, chapter “GPRS Commands”



*'''GPRS command session'''

Following figure shows how GRPS command session is started over TCP.
[[Image:wq.png|wq.png]]

First FM opens GPRS session and sends AVL data to server (refer FM protocols). Once all records are sent and correct sent data array acknowledgment is received by FM then GPRS commands in Hex can be sent to FM.

The ACK (acknowledge of IMEI from server) is a one byte constant 0x01. The acknowledgement of each data array send from FMXXXX is four bytes integer – number of records received.

Note, that GPRS session should remain active between FM and server, while GPRS commands are sent. For this reason active datalink timeout (global parameters in FMXXXX configuration) is recommended to be set to 259200 (maximum value).


*'''General Codec12 message structure'''

The following diagram shows basic structure of Codec 12 messages.


Command message structure
{| class="wikitable"
|-
! 0x00000000 !! Data size !! 0x0C !! Command quantity !! 0x05 !! Command size !! Command !! <CR><LF> !! Command quantity !! CRC
|-
| 4 bytes || 4 bytes || 1 byte || 1 byte || 1 byte || 4 bytes || X bytes || 0D0A || 1 byte || 4 bytes
|}


Response message structure
{| class="wikitable"
|-
! 0x00000000 !! Data size !! 0x0C !! Command quantity !! 0x06 !! Command size !! Command !! Command quantity !! CRC
|-
| 4 bytes || 4 bytes || 1 byte || 1 byte || 1 byte || 4 bytes || X bytes || 1 byte || 4 bytes
|}


Structure explanation:

The message starts with preamble field - four zero bytes. Then goes four bytes data size field (size is calculated from 0x0C field to the second command or response quantity field). Then follows one byte Codec ID field (in Codec 12 it is always 0x0C). Then goes command or response quantity field (it is ignored when parsing the message). After that goes one byte message type field. It can be 0x05 to denote command or 0x06 to denote response. Then follows four bytes command or response size field. After it follows the command or response field itself. After that goes the second command or response quantity field. At the end there’s four bytes CRC field.

Note that difference between commands and responses is message type field: 0x05 means command and 0x06 means response.

The algorithm to calculate CRC is CRC-16 (also known as CRC-16-IBM). All the fields from codec ID to second command/response quantity field are used to calculate CRC. The algorithm of how to calculate


CRC is shown in Figure 3 CRC calculation algorithm.

[[Image:qqq.png|qqq.png]]
<small>Figure 3 CRC calculation algorithm</small>



*'''Command coding table'''

Command has to be convert from ASCII characters (char) to hexadecimal (Hex)

Table 2 ASCII conversion table

[[Image:asa.png|asa.png]]


*'''Command parsing example'''

Hexadecimal stream of command and answer in this example are given in hexadecimal form. The different fields of message are highlighted in gray and yellow for better readability and command is converted in ASCII for better understanding.

'''Server command'''

Hexadecimal stream:

[[Image:sx.png|sx.png]]

Parsed:

Preamble: 0x00000000

Packet Length: 0x00000018

Codec: 0x0C

Quantity of commands: 0x01

Command type: 0x05

Command size: 0x00000010

Command in ASCII after conversion: #GET DATAORDER<CR><LF>

Quantity of commands: 0x01

CRC: 0x00004990


'''Device answer'''

Hexadecimal stream:

[[Image:sds.png|sds.png]]

Parsed:

Preamble: 0x00000000

Packet Length: 0x00000016

Codec: 0x0C

Quantity of commands: 0x01

Command type: 0x06

Command size: 0x0000000E

Command response is in ASCII after conversion: #DATAORDER=1<CR><LF>

Quantity of commands: 0x01

CRC: 0x00000095



*'''Codec12 GPRS commands examples'''

The example commands given in hexadecimal form separated by dollar signs are suitable to be sent from TCP server during data exchange session between FMXXXX device and server (for more details see Figure 1 Command session) The command can be sent from a terminal program such as Hercules (in TCP server mode). Simply write command as explained below into Hercules Send field and click Send button. The TCP server must be listening on specified port (see field Port and button Listen in Figure 4).

[[Image:he.png|he.png]]

<small>Figure 4 Hercules terminal GUI</small>


*'''SMS over GPRS in Codec12 examples'''

In case of sending SMS commands over GPRS, do not use SMS logins set during configuration or do not leave empty spaces before command. Devices and firmware versions that support SMS over GPRS are listed in Table1.

'''Example 1: getinfo'''

Sending “getinfo” SMS command via GPRS Codec12:

Server requests:

Hexadecimal stream:

00000000000000110C010500000009676574696E666F0D0A010000DA7E

Parsed:

Zero: 0x00000000

Packet Length: 0x00000011

Codec: 0x0C

Quantity of commands: 0x01

Command type: 0x05

Command size: 0x00000009

Command: 0x676574696e666f (HEX of getinfo)

Command end symbol: 0x0D0A

Quantity of commands: 01

CRC: 0x0000DA7E


'''Device response:'''

Hexadecimal stream:

00000000000000820C01060000007A494E493A323031312F312F3120303A30205254433A323031312F312F3120373A3333205253543A33204552523A302053523A3134372042523A302043463A312046473A3020464C3A302055543A3020534D533A30204E4F4750533A303A3134204750533A32205341543A302052533A36204D443A302052463A30010000B8AA


Parsed:

Zero: 0x00000000

Packet Length: 0x00000082

Codec: 0C

Quantity of commands: 01

Command type: 06

Command size: 0x0000007A

Command response in ASCII after conversion: INI:2011/1/1 0:0 RTC:2011/1/1 7:33 RST:3 ERR:0 SR:147 BR:0 CF:1 FG:0 FL:0 UT:0 SMS:0 NOGPS:0:14 GPS:2 SAT:0

RS:6 MD:0 RF:0 (without <CR><LF>)

Quantity of commands: 01

CRC: 0x0000B8AA


'''Example 2: getio'''

Sending “getio” SMS command via GPRS Codec12:

Server request:

Hexadecimal stream:

000000000000000F0C010500000007676574696F0D0A0100003349

Parsed:

Zero: 0x00000000

Packet Length: 0x0000000F

Codec: 0x0C

Quantity of commands: 0x01

Command type: 0x05

Command size: 0x00000007

Command: 0x676574696f (HEX of getio)

Command end symbol: 0x0D0A

Quantity of commands: 01

CRC: 00003349


'''Device response:'''

Hexadecimal stream:

000000000000002C0C0106000000244449313A30204449323A30204449333A302041494E3A323420444F313A3020444F323A30010000F925

Parsed:

Zero: 0x00000000

Packet Length: 0x0000002C

Codec: 0C

Quantity of commands: 01

Command type: 06

Command size: 0x00000024

Command response in ASCII after conversion: DI1:0 DI2:0 DI3:0 AIN:24 DO1:0 DO2:0 (without <CR><LF>)

Quantity of commands: 01

CRC: 0x0000F925




*'''Special Codec12 commands:'''


'''Example 1: #GET VERSION'''

Server command - #GET VERSION<CR><LF>

Device response - #VERSION=XXXXXXXX<CR><LF>

XXXXXXXX – Device Firmware Version (up to 8 characters)

$00$00$00$00$00$00$00$16$0C$01$05$00$00$00$0E$23$47$45$54$20$56$45$52$53$49$4f$4e$0D$0A$01$00$00$D0$C8


'''Example 2: #GET NETWORK'''

Server command - #GET NETWORK<CR><LF>

Device response - #NETWORK=XXXXXX<CR><LF>

XXXXXX – GSM Operator Network [0 - 999999]

$00$00$00$00$00$00$00$16$0C$01$05$00$00$00$0E$23$47$45$54$20$4e$45$54$57$4f$52$4b$0D$0A$01$00$00$ED$61

== '''<big>Codec 13</big>''' ==

*'''About Codec13'''

Codec13 is original Teltonika protocol for device-server communication over GPRS messages. This protocol is necessary for using following FM features: COM TCP Link Mode (binary/ASCII/binary buffered/ASCII buffered) if message timestamp parameter is enabled in device configuration. Codec13 messages are one way only (Codec 13 is used for FM->Server sending).

*'''FM firmware requirements'''

Codec13 availability depends on device and firmware version.


{| class="wikitable"
|-
!style="background: black; color: white;"| Device !!style="background: black; color: white;"| Availability
|-
| FM11YX || Available since base firmware 01.18.XX
|-
| FM12YX || Not available
|-
| FM10YX || Not available
|-
| FM3400 || Not available
|-
| FM5300 || Not available
|-
| FM5500 || Not available
|-
| FM2200 || Not available
|-
| FM4200 || Not available
|-
| FM6320 || Available in base
|-
| FMAXX || Not available
|-
| FMBXX || Available in base
|-
| FMB630 || Available in base
|}
<small>Table 1. FM firmware requirements</small>


*'''GPRS command session'''

Following figure shows how GRPS command session is started over TCP.
[[Image:fd.png]]

<small>Figure 1. Command session</small>

First FM opens GPRS session and sends AVL data to server (refer FM protocols).

After all records are sent and correct sent data array acknowledgment is received by FM, it will begin TCP link mode message sending.

TCP Link mode messages do not require ACK.


*'''General Codec13 message structure'''

The following diagram shows basic structure of Codec 13 messages.

{| class="wikitable"
|-
! 0x00000000 !! Data size !! 0x0D !!style="background: yellow; color: red;"| 0x01 !!style="background: black; color: red;"| 0x06 !! Command size !! Timestamp !! Payload !!style="background: yellow; color: red;"| 0x01 !! CRC
|-
| 4 bytes || 4 bytes || 1 byte || 1 byte || 1 byte || 4 bytes || 4 bytes || X bytes || 1 byte || 1 byte
|}

{| class="wikitable"
|-
!style="background: black; color: red;"| 0x06||Message type filed - 0x06 = packet FM -> Server
|}

{| class="wikitable"
|-
!style="background: yellow; color: red;"| 0x01||Ignored bytes
|}


<small>Figure 2. Structure of Codec 13 messages</small>

Structure explanation:

*'''Preamble field''' - four zero bytes.

*'''Data size field''' (size is calculated from:

<small>CID(0x0D = 1 byte)

NOD(0x01 = 1 byte)

CMD_TYPE(0x06 = 1 byte)

CMD_SIZE(variable = 4 bytes, includes size of timestamp field too)

PAYLOAD(variable size, stored in CMD_SIZE field)

NOD(0x01 = 1 byte))
</small>
*'''Codec ID field''' (in Codec 13 it is always 0x0D).

*'''NOD field''' (0x01, it is ignored when parsing the message).

*'''Message type field'''. It is always 0x06 since the packet is direction is FM->Server.

*'''Command size field'''. Command size field includes size of timestamp too, so it is equal to size of payload + size of timestamp.

*'''Timestamp field''' – UNIX timestamp (since 1970/01/01 00:00:00 UTC)

*'''Payload field''' – actual received data

*'''NOD field''' (0x01, it is ignored when parsing the message)

*'''CRC field''' – CRC-16-IBM


The algorithm to calculate CRC is CRC-16 (also known as CRC-16-IBM). All the fields from codec ID to last NOD field are used to calculate CRC. The algorithm of how to calculate CRC is shown in figure 3.

'''NOTE''' – Codec13 packets are used only when “Message Timestamp” parameter in RS232 settings is enabled.

[[Image:111.png|111.png]]

<small>Figure 3. CRC calculation algorithm</small>


*'''Command parsing example'''

The different fields of message are highlighted in gray and yellow for better readability.

Hexadecimal stream:

[[Image:22.png|22.png]]

Parsed:

Preamble: 0x00000000

Packet Length: 0x0000001C

Codec: 0x0D

NOD: 0x01

Command type: 0x06

Command size: 0x00000014

Timestamp: 1458119714 – 03/16/2016 @ 9:15am UTC

Command: #GET DATAORDER<CR><LF>

NOD: 0x01

CRC: 0x00004990


*'''<big>FMB630/FM6320/5300/FM5500 and Codec12 functionality</big>'''

*'''Garmin'''

All information is provided in “FMB6 FM6320 FM5300 FM5500 and Garmin development.pdf” document.

*'''COM TCP Link Mode'''

All information is provided in “FMB6 FM6320 FM5300 and FM5500 TCP Link mode test instructions.pdf” document.

== '''<big>Codec 14</big>''' ==

*'''About Codec14'''

Codec14 is original Teltonika protocol for device-server communication over GPRS messages and it is based on Codec12 protocol.<br>
Main difference of Codec14 is that, device will answer to GPRS command if device physical IMEI number matches specified IMEI number in GPRS command.

Codec14 GPRS commands can be used for sending configuration, debug, digital outputs control commands or other (special purpose command on special firmware versions).

*'''FMB firmware requirements'''

Implemented in base firmware from FMB.Ver.03.25.04.Rev.00 and newer.

*'''General Codec14 message structure'''

The following diagram shows basic structure of Codec14 messages.


*'''Command message structure'''
{| class="nd-othertables_2" style="width:100%;
|+
! rowspan="1" style="width:10%; vertical-align: middle; text-align: center;" | 0x00000000 (preamble)
! rowspan="1" style="width:10%; vertical-align: middle; text-align: center;" | Data size
! rowspan="1" style="width:6%; vertical-align: middle; text-align: center;" | 0x0E (Codec ID)
! rowspan="1" style="width:10%; vertical-align: middle; text-align: center;" | Command quantity
! colspan="1" style="width:10%; vertical-align: middle; text-align: center;"| 0x05<br>(Message type)
! rowspan="1" style="width:14%; vertical-align: middle; text-align: center;" | Command size + IMEI size (8 bytes)
! rowspan="1" style="width:10%; vertical-align: middle; text-align: center;" | IMEI (HEX)
! rowspan="1" style="width:10%; vertical-align: middle; text-align: center;" | Command
! rowspan="1" style="width:10%; vertical-align: middle; text-align: center;" | Command quantity
! rowspan="1" style="width:10%; vertical-align: middle; text-align: center;" | CRC
|-
| style="vertical-align: middle; text-align: center;" | 4 bytes
| style="vertical-align: middle; text-align: center;" | 4 bytes
| style="vertical-align: middle; text-align: center;" | 1 bytes
| style="vertical-align: middle; text-align: center;" | 1 bytes
| style="vertical-align: middle; text-align: center;" | 1 bytes
| style="vertical-align: middle; text-align: center;" | 4 bytes
| style="vertical-align: middle; text-align: center;" | 8 bytes
| style="vertical-align: middle; text-align: center;" | X bytes
| style="vertical-align: middle; text-align: center;" | 1 bytes
| style="vertical-align: middle; text-align: center;" | 4 bytes
|-
|}


*'''Response message structure'''
{| class="nd-othertables_2" style="width:100%;
|+
! rowspan="1" style="width:10%; vertical-align: middle; text-align: center;" | 0x00000000 (preamble)
! rowspan="1" style="width:10%; vertical-align: middle; text-align: center;" | Data size
! rowspan="1" style="width:6%; vertical-align: middle; text-align: center;" | 0x0E (Codec ID)
! rowspan="1" style="width:10%; vertical-align: middle; text-align: center;" | Response quantity
! colspan="1" style="width:10%; vertical-align: middle; text-align: center;"| 0x06 / 0x11 (Message type)
! rowspan="1" style="width:14%; vertical-align: middle; text-align: center;" | Response size + IMEI size (8 bytes)
! rowspan="1" style="width:10%; vertical-align: middle; text-align: center;" | IMEI (HEX)
! rowspan="1" style="width:10%; vertical-align: middle; text-align: center;" | Response
! rowspan="1" style="width:10%; vertical-align: middle; text-align: center;" | Response quantity
! rowspan="1" style="width:10%; vertical-align: middle; text-align: center;" | CRC
|-
| style="vertical-align: middle; text-align: center;" | 4 bytes
| style="vertical-align: middle; text-align: center;" | 4 bytes
| style="vertical-align: middle; text-align: center;" | 1 bytes
| style="vertical-align: middle; text-align: center;" | 1 bytes
| style="vertical-align: middle; text-align: center;" | 1 bytes
| style="vertical-align: middle; text-align: center;" | 4 bytes
| style="vertical-align: middle; text-align: center;" | 8 bytes
| style="vertical-align: middle; text-align: center;" | X bytes
| style="vertical-align: middle; text-align: center;" | 1 bytes
| style="vertical-align: middle; text-align: center;" | 4 bytes
|-
|}


*'''Structure explanation:'''

: 1. The message starts with '''preamble field''' - four zero bytes. <br>
: 2. Then goes four bytes '''data size''' field (size is calculated from 0x0E field to the second command or response quantity field). <br>
: 3. Then follows one byte '''Codec ID field (<span style="color:red">in Codec 14 it is always 0x0E</span>)'''. <br>
: 4. Then goes '''command or response quantity field.''' Response message will contain same quantity field value as request command quantity 1st byte (quantity byte that’s located before message field type byte). 2nd byte (quantity byte that’s located at the end before CRC) will not be parsed but it’s recommended that it should contain same value as 1st byte. <br>
: 5. After that goes one byte '''message type field.''' If it’s request command from server it has to contain 0x05. The response type field will contain 0x06 if it’s ACK or 0x11 if it’s nACK. <br>
Explanation: If command message IMEI is equal to actual device IMEI, received command will be executed and response will be sent with ACK (0x06) message type field value. If command message IMEI doesn’t match actual device IMEI, received command won’t be executed and response to server will be sent with nACK (0x11) message type field value. <br>
: 6. Then follows four bytes '''command or response size field.''' (make sure that size is IMEI size 8 + actual command size.) Minimal value is 8 because codec14 always contain IMEI and it’s 8 bytes. <br>
: 7. After it follows the '''IMEI'''. IMEI is send as HEX value. Example if device IMEI is 123456789123456 then IMEI data field will contain 0x0123456789123456 value. <br>
: 8. After it follows the '''command or response field''' itself. If message type field is nACK (0x11) this data field will be empty. <br>
: 9. After that goes the second '''command or response quantity field.''' <br>
: 10. At the end there’s four bytes '''CRC field'''. <br>

The algorithm to calculate CRC is CRC-16 (also known as CRC-16-IBM). All the fields from codec ID to second command/response quantity field are used to calculate CRC. The algorithm of how to calculate CRC is shown in Figure 3 CRC calculation algorithm.

CRC is shown in Figure 3 CRC calculation algorithm.


*'''GPRS in Codec14 examples'''

Sending "''getver''" SMS command via GPRS Codec14:<br>
'''Server requests:'''<br>
Hexadecimal stream:<br>
0000000000000016<span style="color:red">'''0E'''</span>01<span style="background-color: lightblue">05</span>0000000E<span style="background-color: lightgreen">0352093081452251</span><span style="background-color: yellow">676574766572</span>010000D2C1<br>
'''Parsed:'''<br>
Zero: 0x00000000<br>
Packet Length: 0x00000016<br>
Codec: <span style="color:red">'''0E'''</span><br>
Quantity of commands: 0x01<br>
Command type: 0x<span style="background-color: lightblue">05</span><br>
Command size: 0x0000000E<br>
IMEI: 0x<span style="background-color: lightgreen">0352093081452251</span> (HEX string)<br>
Command: 0x<span style="background-color: yellow">676574766572</span> (HEX of '''getver''')<br>
Quantity of commands: 01<br>
CRC: 0x0000D2C1<br>


'''Device ACK response:'''<br>
Hexadecimal stream: <br>
00000000000000AB<span style="color:red">'''0E'''</span>01<span style="background-color: lightblue">06</span>000000A3<span style="background-color: lightgreen">0352093081452251</span><span style="background-color: yellow">5665723A30332E31382E3<br>
1345F3034204750533A41584E5F352E31305F333333332048773A464D4231323020<br>
4D6F643A313520494D45493A33353230393330383134353232353120496E69743A3<br>
23031382D31312D323220373A313320557074696D653A3137323334204D41433A3<br>
63042444430303136323631205350433A312830292041584C3A30204F42443A3020<br>
424C3A312E362042543A34</span>0100007AAE<br>
'''Parsed:'''<br>
Zero: 0x00000000 <br>
Packet Length: 0x000000AB <br>
Codec: 0x<span style="color:red">'''0E'''</span><br>
Quantity of commands: 01 <br>
Command type: 0x<span style="background-color: lightblue">06</span><br>
Command size: 0x000000A3 <br>
IMEI: 0x<span style="background-color: lightgreen">0352093081452251</span> <br>
Command response in ASCII after conversion:<br>
<span style="background-color: yellow">Ver:03.18.14_04 GPS:AXN_5.10_3333 Hw:FMB120 Mod:15 IMEI:352093081452251 <br>
Init:2018-11-22 7:13 Uptime:17234 MAC:60BDD0016261 SPC:1(0) AXL:0 OBD:0 BL:1.6 BT:4</span><br>
Quantity of commands: 01 <br>
CRC: 0x00007AAE <br>


'''Device nACK response:'''<br>
Hexadecimal stream: <br>
0000000000000010<span style="color:red">'''0E'''</span>01<span style="background-color: lightblue">11</span>00000008<span style="background-color: lightgreen">0352093081452468</span>01000032AC <br>
'''Parsed:'''
Zero: 0x00000000 <br>
Packet Length: 0x00000010 <br>
Codec: 0x<span style="color:red">'''0E'''</span><br>
Quantity of commands: 01 <br>
Command type: 0x<span style="background-color: lightblue">11</span><br>
Command size: 0x00000008 <br>
IMEI: 0x<span style="background-color: lightgreen">0352093081452468</span> <br>
Quantity of commands: 01 <br>
CRC: 0x000032AC <br>

== '''<big>Codec 16</big>''' ==


*'''Description and example'''

Records to server will be sent as shown in table below.
The main difference between CODEC8 and CODEC16 is CODEC ID which will be 0x10 instead of 0x08, AVL ID‘s in AVL data is sent in 2 bytes, instead of 1 byte.

'''Also new parameter – Generation type is added.'''

By receiving 0x10 codec ID server must know that AVL data record will be parsed different.

Codec16 is supported from firmware – 00.03.xx and newer. (FMB630/FM63XY)
ll AVL ID‘s which are higher than 255 will can be used only in CODEC16 protocol.


<small>Generation type elements:</small>
{| class="wikitable"
|-
!style="background: black; color: white;"| Value !!style="background: black; color: white;"| Record created
|-
| 0 || On exit
|-
| 1 || On Entrance
|-
| 2 || On Both
|-
| 3 || Reserved
|-
| 4 || Hysterisis
|-
| 5 || On Change
|-
| 6 || Eventual
|-
| 7 || Periodical
|}


<small>Codec16 TCP packet frame:</small>
{| class="wikitable"
|-
! Header !! Data length !! Codec ID !! NOD1 !! AVL DATA !! NOD2 !! CRC16
|-
| 4 bytes || 4 bytes || 0x10 || 1 byte || Variable || 1 byte || 4 Bytes
|}

NOD1, NOD2 – number of data (number of packed records)

Codec ID – constant 0x10.

Data length – the length of packet from CodecID to NOD2.

NOD2 should be equal to NOD1.

CRC16 is 4 bytes, but first two are zeroes and last two are CRC-16 calculated for CodecID to NOD2.


Received data:

[[Image:123.png|123.png]]

00000000 4 zeros, 4 bytes

0000009D data length, 4 bytes

10 – Codec ID

02- Number of Data (2 records)

1’st record data

0000013feb55ff74 – Timestamp in milliseconds (1374042849140)

GMT: Wed, 17 Jul 2013 06:34:09 GMT

00 – Priority

GPS Elements

0f0ea850 – Longitude 252618832 = 25,2618832º N

209a6900 – Latitude 546990336 = 54,6990336 º E

00AE – Altitude 174 meters

00B9 – Angle 185º

0B – 11 Visible satellites

0000 – 0 km/h speed

IO Elements

0000 – IO element ID of Event generated (in this case when 0000 – data generated not on event)

07 - Generation type

0A – 10 IO elements in record (total)

05 – 5 IO elements, which length is 1 Byte

0001 – IO element ID = 01

00 – IO element’s value = 0

0002 – IO element ID = 02

00 – IO element’s value = 0

0003 – IO element ID = 03

00 – IO element’s value = 0

0004 – IO element ID = 04

00 – IO element’s value = 0

0120 – IO element ID = 288 (dec)

00 – IO element’s value = 0

02 – 2 IO elements, which value length is 2 Bytes

0018 – IO element ID = 24 (dec)

0000 – IO element’s value

0046 – IO element ID = 70 (dec)

0129 – IO element’s value

02 – 2 IO elements, which value length is 4 Bytes

00C7 – IO element ID = 199 (dec)

00000000 – IO element’s value

0046 – IO element ID = 70 (dec)

00000000 – IO element’s value


01 – 1 IO elements, which value length is 8 Bytes

003E – IO element ID = 62 (dec)

0000000000000000 – IO element’s value

2’st record data

0000015B198C7498000F0DBC502095872F00AE00B90B00000000070A0500010000020

00003000004000120000200180000004601290200C700000000004C0000000001003E00000

00000000000

02 – Number of Data (2 records)

000009A5 - CRC-16, 4 Bytes (first 2 are always zeros)


*'''Communication with server'''

First when module connects to server, module sends its IMEI. First comes short identifying number of bytes written and then goes IMEI as text (bytes).

For example IMEI 123456789012345 would be sent as 000f333536333037303432343431303133

First two bytes denote IMEI length. In this case 000F means, that IMEI is 15 bytes long.

After receiving IMEI, server should determine if it would accept data from this module. If yes server will reply to module 01 if not 00. Note that confirmation should be sent as binary packet. I.e. 1 byte 0x01 or 0x00.

Then module starts to send first AVL data packet. After server receives packet and parses it, server must report to module number of data received as integer (four bytes).

If sent data number and reported by server doesn’t match module resends sent data.

'''Example:'''

Module connects to server and sends IMEI:

000f333536333037303432343431303133

Server accepts the module:

01

Module sends data packet:

{| class="wikitable"
|-
!style="background: black; color: white;"| Codec type !!style="background: black; color: white;"| AVL data packet header !!style="background: black; color: white;"| AVL data array !!style="background: black; color: white;"| CRC
|-
| || Four zero bytes,
‘AVL data array’ length – 254
|| CodecId – 08 or codec 16,
NumberOfData – 2.
(Encoded using continuous bit stream.

Last byte padded to align to byte boundary)
|| CRC of ‘AVL data array’
|-
| Codec8 || 00000000000000FE || 0802...(data elements)...02 || 00008612
|-
| Codec16 || 00000000000000FE || 1002...(data elements)...02 || 00008612
|}

Server acknowledges data reception (2 data elements):

00000002


'''<big>Sending data over UDP/IP</big>'''


*'''UDP channel protocol'''

UDP channel is a transport layer protocol above UDP/IP to add reliability to plain UDP/IP using acknowledgment packets. The packet structure is as follows:

{| class="wikitable "
|-
! colspan="4" align="center" style="background: black; color: white;"|UDP datagram
|-
| rowspan="4"| UDP channel packet x N
| Example || 2 bytes || Packet length (excluding this field) in big ending byte order
|-
| Packet Id || 2 bytes || Packet id unique for this channel
|-
| Not usable byte || 1 byte || Not usable byte
|-
| Packet payload || m bytes || Data payload
|}


{| class="wikitable"
|-
! colspan="3" align="center" style="background: black; color: white;"|Not usable byte
|-
| 1 ||Data packet requiring acknowledgment
|}

Acknowledgment packet should have the same packet id as acknowledged data packet and empty data payload.

Acknowledgement should be sent in binary format.

{| class="wikitable"
|-
! colspan="3" align="center" style="background: black; color: white;"|Acknowledgment packet
|-
| Packet length || 2 bytes || 0x0003
|-
| Packet id || 2 bytes || same as in acknowledged packet
|-
| Not usable byte || 1 byte || 0x00
|}


*'''Sending AVL data using UDP channel'''

AVL data are sent encapsulated in UDP channel packets (Data payload field).

{| class="wikitable"
|-
! colspan="3" align="center" style="background: black; color: white;"|AVL data encapsulated in UDP channel packet
|-
| AVL packet id (1 byte) || Module IMEI || AVL data array
|}


AVL packet id (1 byte) – id identifying this AVL packet

Module IMEI – IMEI of a sending module encoded the same as with TCP

AVL data array – array of encoded AVL data

{| class="wikitable"
|-
! colspan="3" align="center" style="background: black; color: white;"|Server response to AVL data packet
|-
| AVL packet id (1 byte) ||Number of accepted AVL elements (1 byte)
|}

AVL packet id (1 byte) – id of received AVL data packet

Number of AVL data elements accepted (1 byte) – number of AVL data array entries from the beginning of array, which were accepted by the server


'''Scenario:'''

Module sends UDP channel packet with encapsulated AVL data packet.
Server sends UDP channel packet with encapsulated response
Module validates AVL packet id and Number of accepted AVL elements. If server response with valid AVL packet id is not received within configured timeout, module can retry sending.


'''Example'''

Module sends the data:

{| class="wikitable"
|-
! style="background: black; color: white;"|UDP channel header !!style="background: black; color: white;"| AVL packet header !!style="background: black; color: white;"| AVL data array
|-
| Len – 253,
Id – 0xCAFE,

Not usable byte – 00

|| AVL packet id – 0xDD,
IMEI – 1234567890123456
|| CodecId – 08,
NumberOfData – 2.
(Encoded using continuous bit stream)

|-
| 00FDCAFE01 || DD000F3133343536373839303132333435 || 0802…(data elements)…02
|}

Server must respond with acknowledgment:

{| class="wikitable"
|-
!style="background: black; color: white;"| UDP channel header !!style="background: black; color: white;"| AVL packet acknowledgment
|-
| Len – 5,
Id – 0xABCD,

Not usable byte – 00
|| AVL packet id – 0xDD,
NumberOfAcceptedData – 2

|-
| 0005ABCD01 || DD02
|}


*'''Another example, with all IO id’s enabled'''

Server received data:

[[Image:aaz.png|aaz.png]]

Data length: 00a1 or 161 Bytes (not counting the first 2 data length bytes)

Packet identification: 0xCAFE 2 bytes

Not usable byte : 00

Packet id: 1b

Imei length: 000f

Actual imei: 333536333037303432343431303133

Codec id: 08

Number of data: 01

Timestamp: 0000013febdd19c8

Priority: 00

GPS data: 0f0e9ff0209a718000690000120000

UDP protocol is the same as TCP except message header is 7 bytes, which consist of: data length, packet identification, not usable byte and packet id.

Then goes imei length and imei itself.

And after that goes AVL data.

And at the very end number of data byte. There is no CRC in UDP.


*'''Sending data using SMS'''

AVL data or events can be sent encapsulated in binary SMS. TP-DCS field of these SMS should indicate that message contains 8-bit data (for example: TP-DCS can be 0x04).

{| class="wikitable"
|-
! colspan="3" align="center" style="background: black; color: white;"|SM data (TP-UD)
|-
| AVL data array ||IMEI: 8 bytes
|}

AVL data array – array of encoded AVL data

IMEI – IMEI of sending module encoded as a big endian 8-byte long number.


*'''24 position SMS data protocol'''


24-hour SMS is usually sent once every day and contains GPS data of last 24 hours. TP-DCS field of this SMS should indicate that message contains 8-bit data (i.e. TP-DCS can be 0x04).

Note, that 24 position data protocol is used only with subscribed SMS. Event SMS use standard AVL data protocol.


'''Encoding'''

To be able to compress 24 GPS data entries into one SMS (140 octets), the data is encoded extensively using bit fields. Data packet can be interpreted as a bit stream, where all bits are numbered as follows:


{| class="wikitable"
|-
!style="background: black; color: white;"| Byte 1 !!style="background: black; color: white;"| Byte 2 !!style="background: black; color: white;"| Byte 3 !!style="background: black; color: white;"| Bytes 4-…
|-
| Bits 0-7 || Bits 8-15 || Bits 16-24 || Bits 25-…
|}

Bits in a byte are numbered starting from least significant bit. A field of 25 bits would consist of bits 0 to 24 where 0 is the least significant bit and bit 24 – most significant bit.


'''Structure'''

{| class="wikitable "
|-
! colspan="4" align="center" style="background: black; color: white;"|SMS Data Structure
|-
| || 8 || Codec ID || Codec ID = 4
|-
| || 35 || Timestamp || Time corresponding to the first (oldest) GPS data element,

represented in seconds elapsed from 2000.01.01 00:00 EET.
|-
| || 5 || ElementCount || Number of GPS data elements
|}



{| class="wikitable "
|-
! colspan="4" align="center" style="background: black; color: white;"|SMS Data Structure
|-
|ElementCount * || || GPSDataElement || GPS data elements.
|-
| || || Byte-align padding || Padding bits to align to 8-bits boundary

represented in seconds elapsed from 2000.01.01 00:00 EET.
|-
| || 64 || IMEI || IMEI of sending device as 8-byte long integer
|}
The time of only the first GPS data element is specified in Timestamp field. Time corresponding to each further element can be computed as elementTime = Timestamp + (1 hour * elementNumber).


{| class="wikitable "
|-
! colspan="5" align="center" style="background: black; color: white;"|GPS Data Element
|-
| || || Size (bits) || Field || Description
|-
| || || 1 || ValidElement || ValidElement=1 – there is a valid Gps Data Element following,
ValidElement=0 – no element at this position
|-
| rowspan="8"| ValidElement == 1
|-
| || 1 || DifferentialCoords || Format of following data.
|-
| rowspan="3"| DifferentialCoords == 1
|-
| 14 || LongitudeDiff || Difference from previous element‘s longitude.
LongitudeDiff = prevLongitude – Longitude + 213 – 1
|-
| 14 || LatitudeDiff || Difference from previous element‘s latitude
LatitudeDiff = prevLatitude – Latitude + 213 – 1
|-
| rowspan="3"| DifferentialCoords == 0
|-
| 21 || Longitude || Longitude= {(LongDegMult + 18 * 108) * (221 –
1)} over {36*108}
|-
| 20 || Latitude || Latitude=(LatDegMult + 9*108) * (220 – 1) over
{18*108}
|-
| || || 8 || Speed || Speed in km/h
|}


Longitude - longitude field value of GPSDataElement

Latitude - latitude field value of GPSDataElement

LongDegMult - longitude in degrees multiplied by 107 (integer part)

LatDegMult latitude in degrees multiplied by 107 (integer part)

prevLongitude longitude field value of previous GPSDataElemen

prevLatitude latitude field value of previous GPSDataElement



*'''Decoding GPS position'''


When decoding GPS data with DifferentialCoords=1, Latitude and Longitude values can be computed as follows: Longitude=prevLongitude – LongitudeDiff + 213 – 1, Latitude=prevLatitude – LatitudeDiff + 213 – 1.

If there were no previous non-differential positions, differential coordinates should be computed assuming prevLongitude=prevLatitude=0.

When Longitude and Latitude values are known, longitude and latitude representation in degrees can be computed as follows:

[[Image:f11.png|f11.png]]



*'''SMS Events'''

When Configured to generate SMS event user will get this SMS upon event

<Year/Month/Day> <Hour:Minute:Second> P:<profile_nr> <SMS Text> Val:<Event Value> Lon:<longitude> Lat:<latitude> Q:<HDOP>

Example:

2016./04/11 12:00:00 P:3 Digital Input 1 Val:1 Lon:51.12258 Lat: 25.7461 Q:0.6

{| class="wikitable"
|-
| No information available || 0 || Iceland || 1C
|-
| Austria || 1 || Kazakhstan || 1D
|-
| Albania || 2 || Luxembourg || 1E
|-
| Andorra || 3 || Lithuania || 1F
|-
| Armenia || 4 || Latvia || 20
|-
| Azerbaijan || 5 || Malta || 21
|-
| Belgium || 6 || Monaco || 22
|-
| Bulgaria || 7 || Republic of Moldova || 23
|-
| Bosnia and Herzegovina || 8 || Macedonia || 24
|-
| Belarus || 9 || Norway || 25
|-
| Switzerland || 0A || Netherlands || 26
|-
| Cyprus || 0B || Portugal || 27
|-
| Czech Republic || 0C || Poland || 28
|-
| Germany || 0D || Romania || 29
|-
| Denmark || 0E || San Marino || 2A
|-
| Spain || 0F || Russian Federation || 2B
|-
| Estonia || 10 || Sweden || 2C
|-
| France || 11 || Slovakia || 2D
|-
| Finland || 12 || Slovenia || 2E
|-
| Liechtenstein || 13 || Turkmenistan || 2F
|-
| Faeroe Islands|| 14 || Turkey || 30
|-
| United Kingdom || 15 || Ukraine || 31
|-
| Georgia || 16 || Vatican City || 32
|-
| Greece || 17 || Yugoslavia || 33
|-
| Hungary || 18 || RFU || 34..FC
|-
| Croatia || 19 || European Community || FD
|-
| Italy || 1A || Example || FE
|-
| Ireland || 1B || Rest of the world || FF
|}

Navigation menu