TRB245 GPS

From Teltonika Networks Wiki
Main Page > TRB Gateways > TRB245 > TRB245 Manual > TRB245 WebUI > TRB245 Services section > TRB245 GPS

The information in this page is updated in accordance with firmware version TRB2_R_00.07.09.

Summary

The Global Positioning System (GPS) is a space-based radionavigation system. This page is an overview of the GPS service in TRB245 devices.

General

The General is used to enable the GPS service and the support for different types satellites. Once you turn on GPS, you can check the Map page in order to see if the device has obtained a GPS fix. It is very important to attach the GPS antenna on the device and place it outside (not inside of a building). The device will not be likely to obtain a GPS fix otherwise.

The figure below is an example of the General page and the table below provides information on the fields contained in that page:

Networking rutos manual gps general v2.png

Field Value Description
Enabled off | on; default: off Turns the GPS service on or off.
DPO enabled off | on; default: off Enable dynamic power optimization (requires modem reboot). This function is not supported on devices with Meig modems or Quectel BG95 modem
Galileo NMEA support* off | on; default: off Turns support for Galileo satellites on or off.
Glonass NMEA support* off | on; default: off Turns support for Glonass satellites on or off.
BeiDou NMEA support* off | on; default: off Turns support for BeiDou satellites on or off.

*Changing these options requires a modem reboot. Therefore, if you make changes to these options and save them, the device will lose cellular connectivity for about 30 seconds.

Map

The Map page displays the device's current coordinates and position on the map. To see the device's location on the map, make sure to attach the GPS antenna on the device and enable GPS in the General page.

The figure below is an example of the Map page:

Networking rutos manual gps map v4.png

NMEA

The NMEA page is used to configure settings related to NMEA sentence collecting and forwarding.

NMEA forwarding


The NMEA forwarding section is used to configure and enable NMEA forwarding. The figure below is an example of the NMEA forwarding section and the table below provides information on the fields contained in that section:

Networking rutos manual gps nmea nmea forwarding v2.png

Field Value Description
Enabled off | on; default: off Turns NMEA forwarding on or off.
Hostname ip | host; default: none IP address or hostname of the server to which NMEA data will be forwarded.
Protocol TCP | UDP; default: TCP Protocol that will be used to send NMEA data.
Port integer [0..65535]; default: 8500 Port number off the server to which NMEA data will be forwarded.
Contain connection off | on; default: off Contains active session with the remote server if turned on.
Select prefix Custom | None |Serial | Mac address | IMEI; default: None Prefix is added to the NMEA sentence before it is transmitted.

NMEA forwarding cache


The device caches NMEA forwarding information if NMEA forwarding is enabled. This section is used to select the memory type where the cache will be stored and the maximum amount of data that will be saved:

Networking rutos manual gps nmea nmea forwarding cache.png

Field Value Description
Save cache in RAM Memory | FLASH Memory; default: RAM Memory Selects which type of memory will be used for storing NMEA forwarding cache.
Maximum sentences integer; default: 5000 Maximum amount of NMEA sentences that will be saved in the cache before older entries are deleted and replaced by new ones.
File filepath; default: none Location of the file where NMEA forwarding cache information will be stored. This field becomes visible only when the selected memory type is "flash".

NMEA collecting


The NMEA collecting section is used to enable NMEA sentence gathering and storing. The figure below is an example of the NMEA collecting section and the table below provides information on the fields contained in that section:

Networking rutos manual gps nmea nmea collecting v2.png

Field Value Description
Enabled off | on; default: off Turns NMEA sentence collecting on or off.
File filepath; default: none Location of the file where NMEA sentences will be stored. This field becomes visible only when NMEA collecting is enabled.

NMEA sentence settings


The NMEA sentence settings section provides the possibility to configure which NMEA sentences will be forwarded or collected and at what frequency. The figure below is an example of the NMEA sentence settings section and the table below provides information on the fields contained in that section:

Networking rutos manual gps nmea nmea sentence settings.png

Field Value Description
Forwarding enabled off | on; default: off Enables forwarding for the adjacent NMEA sentence.
Forwarding interval positive integer; default: 5 NMEA sentence forwarding frequency in seconds.
Collecting enabled off | on; default: off Enables collecting for the adjacent NMEA sentence.
Collecting interval positive integer; default: 5 NMEA sentence collecting frequency in seconds.


NMEA sentence reference table:

NMEA sentence name Description
GPGSV Number of GPS satellites in view.
GPGGA GPS fix data.
GPVTG GPS track made good and speed relative to the ground.
GPRMC Recommended minimum specific GPS/Transit data.
GPGSA GPS DOP and active satellites.
GNGSA GLONASS DOP and active satellites.
GLGSV Number of GLONASS satellites in view.
GNGNS GNSS position fix from more than one constellation (e.g., GPS + GLONASS).
GAGSV Number of Galileo satellites in view.
GARMC Recomended minimum specific for Galileo data.
GAGGA Galileo fix data.
GAGSA Galileo DOP and active satellites.
GAVTG Galileo track made good and speed information relative to the ground.
PQGSV Detailed satellite data (used in BeiDou and QZSS (Quectel Quirk) sentences).
PQGSA Overall satellite data (used in BeiDou and QZSS (Quectel Quirk) sentences).
GBGSV Detailed satellite data (used in BeiDou sentences).
GBGSA BeiDou DOP and active satellites.
GQGSV Detailed QZSS satellite data (QZSS regional GPS augmentation system (Japan)).
GQGSA QZSS DOP and active satellites (QZSS regional GPS augmentation system (Japan)).

HTTPS

The HTTPS page can be used to configure data sending to an HTTP(S) server.

HTTPS/HTTP server settings


The HTTPS/HTTP Server Settings section is used to enable GPS data sending to an HTTP or HTTPS server.

Networking rutos manual gps https server settings v1.png

Field Value Description
Enabled off | on; default: off Turns data sending to HTTP/HTTPS server on or off.
URL url string; default: none URL of the remote server (ex. example.com/xxxx).
Interval integer; default: none Interval on which collected NMEA sentences should be forwarded.

TAVL settings


The TAVL settings section is used to select which data will be sent to the TAVL server: Networking trb245 manual gps https tavl settings v1.png

Field Value Description
Signal off | on; default: off Includes GSM signal strength information in the GPS data sent to server.
Configurable Input/Output (2) off | on; default: off Includes Dio0 status information in the GPS data sent to server.
Configurable Input/Output (3) off | on; default: off Includes Dio1 status information in the GPS data sent to server.
Configurable Input/Output (4) off | on; default: off Includes Dio2 status information in the GPS data sent to server.
Analog Input (11) off | on; default: off Includes Adc0 status information in the GPS data sent to server.
HDOP off | on; default: off Includes horizontal dilution of precision in the GPS data sent to server.

AVL

The AVL page is used to set up GPS data sending to an AVL server.

AVL server settings


The AVL server settings section is used to configure the main parameters of data sending to an AVL server. The figure below is an example of the AVL Server Settings section and the table below provides information on the fields contained in that section:

Networking rutos manual gps avl avl server settings v1.png

Field Value Description
Enabled off | on; default: off Turns data sending to AVL server on or off.
Retry on Fail off | on; default: off Turn retries in case of a failed attempts on or off. When turned on, the device will try to send the same data to the server until the transmission is successful.
Hostname ip | host; default: 192.168.0.1 IP address or hostname of an AVL server.
Protocol TCP | UDP; Default: TCP Protocol that will be used for communication with the AVL server.
Port integer [0..65535]; default: 8501 TCP/UDP port number of the AVL server to which the device will be connecting.
Don't Contain Connection off | on; default: off When turned on, handles each AVL packet iteration as a new connection. When turned off, connects once and uses the same socket for future communication.
Static Navigation off | on; default: off Stop collecting NMEA data if object is stationary. Ignores data when speed equals to 0 or same as previous coordinates (rounded to 4 decimals).

Main rule


The Main rule section defines how and when GPS data will be collected and sent to a specified AVL server. Refer to the figure and table below for information on the configuration fields of Main Rule.

Networking rutos manual gps avl main rule v2.png

Field Value Description
Enable off | on; default: on Turns the main rule on or off.
Rule priority Low priority level | High priority level | Panic priority level | Security priority level; default: Low priority level The rule's priority. Different priority settings add different flags to event packets, so they can be displayed differently in the receiving system. The device sends data of higher priority first. Priority levels from highest to lowest are as follows:
  1. Security
  2. Panic
  3. High
  4. Low
Collect period integer [1..999999]; default: 5 How often (in seconds) data will be collected.
Min distance integer [1..999999]; default: 50 Minimum distance change (in meters) before sending records.
Min angle integer [1..360]; default: 50 Minimum angle change (in degrees) before sending records.
Min accuracy integer [1..999999]; default: 10 Minimum accuracy (in meters) required before saving record. The lower the accuracy value, the better.
Min saved records integer [1..32]; default: 20 Minimum amount of gathered records before sending.
Send period integer [0..999999]; default: 60 How often (in seconds) gathered data is sent.

Secondary rules


The Secondary rules section provides you with the possibility to create additional data sending rules. The difference from the main rule is that the secondary rules only send data when the device uses a specified type of WAN and when the digital isolated output is in the specified state.

Refer to the figure and table below for information on the configuration fields of the Secondary rules section.

Networking rutos manual gps avl secondary rules TRB2 v2.png

Field Value Description
Enable off | on; default: off Turns the secondary rule on or off.
WAN Mobile Both | Mobile Home | Mobile Roaming | Wired; default: Mobile Home Selects which type of WAN will trigger the rule.
Ignore off | on; default: off If enabled, the rule ignores state of input.
IO level Low level | High level | Both; default: High level Selects which input state will trigger the rule.
IO typeGPIO | ADC; default: GPIO Selects input type.
IO nameConfigurable Input/Output (3) | Configurable Input/Output (4); default: Configurable Input/Output (3) Selects which specific input will trigger the rule.
Rule priority Low priority level | High priority level | Panic priority level | Security priority level; default: High priority level The rule's priority. Different priority settings add different flags to event packets, so they can be displayed differently in the receiving system. The device sends data of higher priority first. Priority levels from highest to lowest are as follows:
  1. Security
  2. Panic
  3. High
  4. Low
Collect period integer [1..999999]; default: 10 How often (in seconds) data will be collected.
Min distance integer [1..999999]; default: 25 Minimum distance change (in meters) before sending records.
Min angle integer [1..360]; default: 25 Minimum angle change (in degrees) before sending records.
Min accuracy integer [1..999999]; default: 10 Minimum accuracy (in meters) required before saving record. The lower the accuracy value, the better.
Min saved records integer [1..32]; default: 10 Minimum amount of gathered records before sending.
Send period integer [0..999999]; default: 10 How often (in seconds) gathered data is sent.

TAVL settings


The TAVL settings section is used to select which data will be sent to the TAVL server:

Networking trb245 manual gps https tavl settings.png

Field Value Description
Signal off | on; default: off Includes GSM signal strength information in the GPS data sent to server.
Dio0 off | on; default: off Includes Dio0 status information in the GPS data sent to server.
Dio1 off | on; default: off Includes Dio1 status information in the GPS data sent to server.
Dio2 off | on; default: off Includes Dio2 status information in the GPS data sent to server.
Adc0 off | on; default: off Includes Adc0 status information in the GPS data sent to server.

AVL I/O

The AVL I/O tab provides you with the possibility to configure input rules.

Input Rules


The Input Rules section displays existing input rules. To create a new input rule click the 'Add' button.

Networking rutos manual gps avl io input rules add button.png

After this you should be redirected to configuration page of the newly added rule, which should look similar to this:

Networking rutos manual gps avl io input rules avl input rule data configuration trb245.png

Field Value Description
Enable off | on; default: on Turns the input rule on or off.
Input type Analog Input (11) | Configurable Input/Output (2) | Configurable Input/Output (3) | Configurable Input/Output (4); default: Analog Input (11) Select type on your own intended configuration.
Trigger Inside range | Outside range; Input active | Input low | Both; default: Inside range; Input active Inside range - Input voltage falls in the specified region, Outside range - Input voltage drops out of the specified region; Select trigger event for your own intended configuration.
Priority Low | High | Panic | Security; default: Low The rule's priority. Different priority settings add different flags to event packets, so they can be displayed differently in the receiving system. The device sends data of higher priority first.

GPS Geofencing

A geofence is a virtually defined boundary for a real-world geographic area. The GPS Geofencing page provides you with the possibility to set this custom area and apply rules that will inform you when the device leaves or enters the geofence.

To create a new geofence area, enter a custom name for it and click the 'Add' button. A new geofence area configuration with the given name should appear in the "Geofencing" list. Click the button that looks like a pencil next to it to begin editing.

The figure below is an example of GPS Geofencing configuration and the table below provides information related to that configuration:

Networking rutos manual gps gps geofencing geofencing details v2.png

Field Value Description
Enable off | on; default: off Turns the Geofence rule on or off.
Longitude (X) degrees [-180.000000..180.000000]; default: 0.000000 East-west position of a point on the Earth's surface. Combining this and the Latitude information will produce a point on the world map that will serve as the center of the geofence area.
Latitude (Y) degrees [-90.000000..90.000000]; default: 0.000000 North-south position of a point on the Earth's surface. Combining this and the Longitude information will produce a point on the world map that will serve as the center of the geofence area.
Radius integer [1..999999]; default: 200 Radius (in meters) of the geofence area.
Generate event on Exit | Enter | Enter/exit; default: Exit Specifies whether the rule should be triggered when the device enters the geofence area, leaves it or on both events.
Switch profile configuration profiles; default: none Selects a profile to switch to on this geofencing event.
Get current coordinates - (interactive button) Obtains the device's current coordinates and places them in the Longitude and Latitude fields.